• Title/Summary/Keyword: fine-resolution

Search Result 445, Processing Time 0.025 seconds

A Study on 3D Scan Technology for Find Archetype of Youngbeokji in Seongnagwon Garden (성락원 영벽지의 원형 파악을 위한 3D 스캔기술 연구)

  • Lee, Won-Ho;Kim, Dong-Hyun;Kim, Jae-Ung;Park, Dong-Jin
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.95-105
    • /
    • 2013
  • This study on circular identifying purposes was performed of Youngbeokji space located in Seongnagwon(Scenic Sites No.35). Through the data acquisition of 3D high precision, such as the surrounding terrain of the Youngbeokji. The results of this study is summarized like the following. First, the purpose of the stone structures and structure within the Youngbeokji search is an important clue to find that earlier era will be a prototype. 3D scan method of enforcement is searching the whole structure, including the surrounding terrain and having the easy way. Second, the measurement results are as follows. Department of bedrock surveyed from South to North was measured by 7,665mm. From East to West was measured at 7,326mm. The size of the stone structures, $1,665mm{\times}1,721mm$ in the form of a square. Its interior has a diameter of 1, 664mm of hemispherical form. In the lower portion of the rock masses in the South to the North, has fallen out of the $1,006mm{\times}328mm$ scale traces were discovered. Third, the Youngbeokji recorded in the internal terrain Multiresolution approach. After working with the scanner and scan using the scan data, broadband, to merge. Polygon Data conversion to process was conducted and mash as fine scan data are converted to process data. High resolution photos obtained through the creation of 3D terrain data overlap and the final result. Fourthly, as a result of this action, stone structure West of the waterway back outgoing times oil was confirmed. Bangjiwondo is estimated to be seokji of structure hydroponic facility confirmed will artificially carved in the bedrock. As a result of this and the previous situation of the 1960s could compare data was created. This study provides 3D precision ordnance through the acquisition of the data. Excavations at the circle was able to preserve in perpetuity as digital data. In the future, this data is welcome to take a wide variety of professionals. This is the purpose of this is to establish foundations and conservation management measures will be used. In addition, The new ease of how future research and 3D scan unveiled in the garden has been used in the study expect.

Geoacoustic characteristics of Quaternary stratigraphic sequences in the mid-eastern Yellow Sea (황해 중동부 제4기 퇴적층의 지음향 특성)

  • Jin, Jae-Hwa;Jang, Seong-Hyeong;Kim, Seong-Pil;Kim, Hyeon-Tae;Lee, Chi-Won;Chang, Jeong-Hae;Choi, Jin-Hyeok;Ryang, Woo-Heon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.81-92
    • /
    • 2001
  • According to analyses of high-resolution seismic profiles (air gun, sparker, and SBP) and a deep-drill core(YSDP 105) in the mid-eastern Yellow Sea, stratigraphic and geoacoustic models have been established and seismo-acoustic modeling has been fulfilled using ray tracing of finite element method. Stratigraphic model reflects seismo-, litho-, and chrono-stratigraphic sequences formed under a significant influence of Quaternary glacio-eustatic sea-level fluctuations. Each sequence consists of terrestrial to very-shallow-marine coarse-grained lowstand systems tract and tidal fine-grained transgressive to highstand systems tract. Based on mean grain-size data (121 samples) of the drill core, bulk density and P-wave velocity of depositional units have been inferred and extrapolated down to a depth of the recovery using the Hamilton's regression equations. As goo-acoustic parameters, the 121 pairs of bulk density and P-wave velocity have been averaged on each unit of the stratigraphic model. As a result of computer ray-tracing simulation of the subsurface strata, we have found that there are complex ray paths and many acoustic-shadow zones owing to the presence of irregular layer boundaries and low-velocity layers.

  • PDF

Nondestructive Examination of PHWR Pressure Tube Using Eddy Current Technique (와전류검사 기술을 적용한 가압중수로 원전 압력관 비파괴검사)

  • Lee, Hee-Jong;Choi, Sung-Nam;Cho, Chan-Hee;Yoo, Hyun-Joo;Moon, Gyoon-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.3
    • /
    • pp.254-259
    • /
    • 2014
  • A pressurized heavy water reactor (PHWR) core has 380 fuel channels contained and supported by a horizontal cylindrical vessel known as the calandria, whereas a pressurized water reactor (PWR) has only a single reactor vessel. The pressure tube, which is a pressure-retaining component, has a 103.4 mm inside diameter ${\times}$ 4.19 mm wall thickness, and is 6.36 m long, made of a zirconium alloy (Zr-2.5 wt% Nb). This provides support for the fuel while transporting the $D_2O$ heat-transfer fluid. The simple tubular geometry invites highly automated inspection, and good approach for all inspection. Similar to all nuclear heat-transfer pressure boundaries, the PHWR pressure tube requires a rigorous, periodic inspection to assess the reactor integrity in accordance with the Korea Nuclear Safety Committee law. Volumetric-based nondestructive evaluation (NDE) techniques utilizing ultrasonic and eddy current testing have been adopted for use in the periodic inspection of the fuel channel. The eddy current testing, as a supplemental NDE method to ultrasonic testing, is used to confirm the flaws primarily detected through ultrasonic testing, however, eddy current testing offers a significant advantage in that its ability to detect surface flaws is superior to that of ultrasonic testing. In this paper, effectiveness of flaw detection and the depth sizing capability by eddy current testing for the inside surface of a pressure tube, will be introduced. As a result of this examination, the ET technique is found to be useful only as a detection technique for defects because it can detect fine defects on the surface with high resolution. However, the ET technique is not recommended for use as a depth sizing method because it has a large degree of error for depth sizing.

Verification of Indicator Rotation Correction Function of a Treatment Planning Program for Stereotactic Radiosurgery (방사선수술치료계획 프로그램의 지시자 회전 오차 교정 기능 점검)

  • Chung, Hyun-Tai;Lee, Re-Na
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • Objective: This study analyzed errors due to rotation or tilt of the magnetic resonance (MR) imaging indicator during image acquisition for a stereotactic radiosurgery. The error correction procedure of a commercially available stereotactic neurosurgery treatment planning program has been verified. Materials and Methods: Software virtual phantoms were built with stereotactic images generated by a commercial programming language, Interactive Data Language (version 5.5). The thickness of an image slice was 0.5 mm, pixel size was $0.5{\times}0.5mm$, field of view was 256 mm, and image resolution was $512{\times}512$. The images were generated under the DICOM 3.0 standard in order to be used with Leksell GammaPlan$^{(R)}$. For the verification of the rotation error correction function of Leksell GammaPlan$^{(R)}$, 45 measurement points were arranged in five axial planes. On each axial plane, there were nine measurement points along a square of length 100 mm. The center of the square was located on the z-axis and a measurement point was on the z-axis, too. Five axial planes were placed at z=-50.0, -30.0, 0.0, 30.0, 50.0 mm, respectively. The virtual phantom was rotated by $3^{\circ}$ around one of x, y, and z-axis. It was also rotated by $3^{\circ}$ around two axes of x, y, and z-axis, and rotated by $3^{\circ}$ along all three axes. The errors in the position of rotated measurement points were measured with Leksell GammaPlan$^{(R)}$ and the correction function was verified. Results: The image registration errors of the virtual phantom images was $0.1{\pm}0.1mm$ and it was within the requirement of stereotactic images. The maximum theoretical errors in position of measurement points were 2.6 mm for a rotation around one axis, 3.7 mm for a rotation around two axes, and 4.5 mm for a rotation around three axes. The measured errors in position was $0.1{\pm}0.1mm$ for a rotation around single axis, $0.2{\pm}0.2mm$ for double and triple axes. These small errors verified that the rotation error correction function of Leksell GammaPlan$^{(R)}$ is working fine. Conclusion: A virtual phantom was built to verify software functions of stereotactic neurosurgery treatment planning program. The error correction function of a commercial treatment planning program worked within nominal error range. The virtual phantom of this study can be applied in many other fields to verify various functions of treatment planning programs.

Polarization-sensitive Optical Coherence Tomography Imaging of Pleural Reaction Caused by Talc in an ex vivo Rabbit Model (생체 외 토끼 모델에서의 탈크에 의해 유발되는 흉막 반응의 편광 민감 광 결맞음 단층촬영 이미징)

  • Park, Jung-Eun;Xin, Zhou;Oak, Chulho;Kim, Sungwon;Lee, Haeyoung;Park, Eun-Kee;Jung, Minjung;Kwon, Daa Young;Tang, Shuo;Ahn, Yeh-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • The chest wall, an organ directly affected by environmental particles through respiration, consists of ribs, a pleural layer and intercostal muscles. To diagnose early and treat disease in this body part, it is important to visualize the details of the chest wall, but the structure of the pleural layer cannot be seen by chest computed tomography or ultrasound. On the other hand, optical coherence tomography (OCT), with a high spatial resolution, is suited to observe pleural-layer response to talc, one of the fine materials. However, intensity-based OCT is weak in providing information to distinguish the detailed structure of the chest wall, and cannot distinguish the reaction of the pleural layer from the change in the muscle by the talc. Polarization-sensitive OCT (PS-OCT) takes advantage of the fact that specific tissues like muscle, which have optical birefringence, change the backscattered light's polarization state. Moreover, the birefringence of muscle associated with the arrangement of myofilaments indicates the muscle's condition, by measuring retardation change. The PS-OCT image is interpreted from three major perspectives for talc-exposure chest-wall imaging: a thickened pleural layer, a separation between pleural layer and muscle, and a phase-retardation measurement around lesions. In this paper, a rabbit chest wall after talc pleurodesis is investigated by PS-OCT. The PS-OCT images visualize the pleural layer and muscle, respectively, and this system shows different birefringence of normal and damaged lesions. Also, an analyisis based on phase-retardation slope supports results from the PS-OCT image and histology.