• 제목/요약/키워드: filtration flux

검색결과 265건 처리시간 0.023초

철염계 응집제를 사용한 전응집침전, 전염소처리와 PVDF 재질의 정밀여과 막을 조합한 막 여과 정수처리시스템 평가에 관한 연구 (Performance Evaluation of MF Membrane Filtration Pilot System Associated with Pre Coagulation-Sedimentation with Iron-Based Coagulant and Chlorination Treatment)

  • 이상협;장낙용;와타나베 요시마사;최용수
    • 상하수도학회지
    • /
    • 제18권5호
    • /
    • pp.588-597
    • /
    • 2004
  • In this research, we investigated the variation of transmembrane pressure and permeate water quality with pre coagulation and sedimentation with iron based coagulant and chlorination of feed water for PVDF (polyvinylidene fluoride) based MF membrane filtration. NaCIO was fed to the membrane module with dosage of 0.5mg/L and maintained during filtration. To observe the effect of raw water, three types of raw and processed waters, including river surface water, coagulated water and coagulated-settled water, were applied. In case of river surface water, the transmembrane pressure increased drastically in 500 hours of operation. On the contrary, no significant increase in transmembrane pressure was observed for 1,200 hours of operation for coagulated water and coagulated-settled waters. The turbidity of permeate was lower than a detection limit of equipment for all raw waters. The removal efficiency of humic substances of coagulated water and coagulated-settled water was approximate ten times of that of surface river water. And, the removal efficiency of TOC and DOC was approximate two times of that of surface river water. From the results of plant operation, stable operation was maintained at $0.9m^3/m^2{\cdot}day$ filtration flux through the combination of pre-coagulation and pre-chlorination. However, the water quality of permeate was the best when pre-coagulation-sedimentation process was combined with pre-chlorination.

Using response surface methodology and Box-Behnken design in the study of affecting factors on the dairy wastewater treatment by MEUF

  • Khosroyar, Susan;Arastehnodeh, Ali
    • Membrane and Water Treatment
    • /
    • 제9권5호
    • /
    • pp.335-342
    • /
    • 2018
  • Micelle-Enhanced Ultrafiltration (MEUF) is a membrane separation processes that improving ultrafiltration process with the formation of micelles of the surface active agents. Surface active agents are widely used to improve membrane processes due to the ability to trap organic compounds and metals in the treatment of industrial waste water. In this study, surface active agents are used to improve micelle-enhanced ultrafiltration (MEUF) to reduce chemical oxygen demand (COD), total dissolved solid (TDS), turbidity and clogging the membrane in dairy wastewater treatment. Three important operational factors (anionic surface active agent concentration, pressure and pH) and these interactions were investigated by using response surface methodology (RSM) and Box-Behnken design. Results show that due to the concentration polarization layer and increase the number of Micelles; the anionic surface active agent concentration has a negative effect on the flux and has a positive effect on the elimination of contamination indices. pH, and the pressure have the greatest effect on flux. On the other hand, it could be stated that these percentages of separation are in the percentages range of Nano-filtration (NF). While MEUF process has higher flux than NF process. The results have been achieved at lower pressure while NF process needs high pressure, thus making MEUF is the replacement for the NF process.

Preparation and characterization of PVDF/TiO2 composite ultrafiltration membranes using mixed solvents

  • Tavakolmoghadam, Maryam;Mohammadi, Toraj;Hemmati, Mahmood
    • Membrane and Water Treatment
    • /
    • 제7권5호
    • /
    • pp.377-401
    • /
    • 2016
  • To study the effect of titanium dioxide ($TiO_2$) nanoparticles on membrane performance and structure and to explore possible improvement of using mixed solvents in the casting solution, composite polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via immersion precipitation method using a mixture of two solvents triethyl phosphate (TEP) and dimethylacetamide (DMAc) and addition of $TiO_2$ nanoparticles. Properties of the neat and composite membranes were characterized using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), Atomic force microscopy (AFM) and contact angle and membrane porosity measurements. The neat and composite membranes were further investigated in terms of BSA rejection and flux decline in cross flow filtration experiments. Following hydrophilicity improvement of the PVDF membrane by addition of 0.25 wt.% $TiO_2$, (from $70.53^{\circ}$ to $60.5^{\circ}$) degree of flux decline due to irreversible fouling resistance of the composite membrane reduced significantly and the flux recovery ratio (FRR) of 96.85% was obtained. The results showed that using mixed solvents (DMAc/TEP) with lower content of $TiO_2$ nanoparticles (0.25 wt.%) affected the sedimentation rate of nanoparticles and consequently the distribution of nanoparticles in the casting solution and membrane formation which influenced the properties of the ultimate composite membranes.

하수처리수 재이용을 위한 막분리 공정시 응집조건에 따른 투과효율 변화에 관한 연구 (A Study on Flux Efficiency on Membrane for Water Reclamination according to Coagulations)

  • 정진희;장성호;최영익
    • 한국환경과학회지
    • /
    • 제20권6호
    • /
    • pp.767-773
    • /
    • 2011
  • The objectives of this research are to investigate the proper coagulation conditions which are a type and doses of coagulants, mixing conditions (velocity gradients and mixing times), pH and so on through Jar-test, to evaluate the flux variations, permeate, backwashing according to characteristics of pretreatment of the wastewater by means of MF membranes for river maintenance water reuse. The effluent water from B-city K-sewage treatment plant are used for this research. Turbidity and suspended solids(SS) are 14.2 NTU and 10.4 mg/L respectively. This condition causes fouling for membrane process. The flux decline could be reduced when coagulation pretreatment was carried out. Optimal coagulations PAC which are commonly used in the sewage treatment plant was observed in this research. The results indicate that an optimal coagulation dose and pH are 80 ppm and pH of 7 respectively, but coagulation efficiency was lower at strong acid or strong base. Results showed that continuous and steady operations in membrane separation process by means of the effective removal of organic matter and turbidity with coagulation pretreatment of sewage secondary effluent were achieved.

Separation and flux characteristics in cross-flow ultrafiltration of bovine serum albumin and bovine hemoglobin solutions

  • Hsiao, Ruey-Chang;Hung, Chia-Lin;Lin, Su-Hsia;Juang, Ruey-Shin
    • Membrane and Water Treatment
    • /
    • 제2권2호
    • /
    • pp.91-103
    • /
    • 2011
  • The flux behavior in the separation of equimolar bovine serum albumin (BSA) and bovine hemoglobin (HB) in aqueous solutions by cross-flow ultrafiltration (UF) was investigated, in which polyacylonitrile membrane with a molecular weight cut-off (MWCO) of 100 kDa was used. BSA and HB have comparable molar mass (67,000 vs. 68,000) but different isoelectric points (4.7 vs. 7.1). The effects of process variables including solution pH (6.5, 7.1, and 7.5), total protein concentration (1.48 and 7.40 ${\mu}M$), transmembrane pressure (69, 207, and 345 kPa), and solution ionic strength (with or without 0.01 M NaCl) on the separation were examined. It was shown that the ionic strength had a negligible effect on separation performance under the conditions studied. Although BSA and HB are not rigid bodies, the flux decline in the present cross-flow UF did not result from the mechanism of cake filtration with compression. In this regard, the specific cake resistance when pseudo steady-state was reached was evaluated and discussed.

원수의 물리.화학적 특성에 따른 막 분리 공정의 전처리 공정 적용성 평가 (Effect of Pretreatment Process on Hybrid Membrane Filtration Performance)

  • 정철우;손희종;배상대
    • 대한환경공학회지
    • /
    • 제28권6호
    • /
    • pp.613-619
    • /
    • 2006
  • [ $MIEX^{(R)}$ ]와 응집에 의한 분자량 크기별 제거특성에서는 10 kDa 미만의 유기물질에 대해서는 $MIEX^{(R)}$ 처리가 우수한 제거능을 나타내었으나, 10 kDa 이상의 유기물질은 응집 공정에서 높은 제거능을 가지는 것으로 나타났다. 막의 공극 크기에 대한 투과 flux 실험결과 UF 공정에 비하여 MF 공정에서의 투과 flux 감소율이 낮게 나타나고 있으며, MF 공정에 적용된 전처리 공정중 $MIEX^{(R)}+MF$ 공정의 경우 응집+MF 공정에 비하여 투과 flux 감소율이 낮게 나타나고 있다. $MIEX^{(R)}+UF$ 공정의 경우 입자상 물질의 존재 유무에 상관없이 flux 감소율은 거의 유사하게 나타났으나, 응집+UF 공정의 경우에는 용존성 유기물질만이 존재하는 시수에 비하여 입자상 물질이 존재하는 경우 투과 flux 감소율은 작게 나타났다. 응집 공정의 적용 후 다양한 입도분포 변화가 발생하였으며, pH 7에서 $MIEX^{(R)}$ 입자의 제타전위 측정결과 $MIEX^{(R)}$ 입자의 전하는 평균 -2.3 mV로 나타나 전기화학적으로 입자상 물질의 흡착이 가능하며 $MIEX^{(R)}$가 침전됨에 따라 입자상 물질이 sweep되어 입도분포 변화를 보였다.

형광입자를 이용한 분리막 표면 검측과 손상 면적 추정 오차에 대한 연구 (Estimation of damage area on membrane surface by application of fluorescent particles as a surrogate)

  • 최윤경;김초아;김희준;조진우
    • 상하수도학회지
    • /
    • 제28권2호
    • /
    • pp.171-179
    • /
    • 2014
  • In this study, a novel method was proposed to test the integrity of water treatment system specifically equipped with membrane filtration process. We applied the silica particles coated with a fluorescent agent (rhodamine B isothiocyanate) as a surrogate to detect a membrane process integrity and evaluate the reliability of effluent quality in the system. Additionally, a series of experiments was conducted to evaluate the sensitivity of the method through the laboratory scale experiment. The laboratory scale experiments showed that the feasibility of application of proposed method to detect a breach or damaged part on the membrane surface. However, the sensitivity on predicting the area of a breach was significantly influenced by the testing conditions such as a concentration of surrogate, filtration flux, and detection time. The lowest error of predicting the area of breach was 3.5% at the testing condition of surrogate concentration of 80 mg/L injected with flux of $20L/m^2/hr$ for 10 minutes of detection time for the breach having the actual area of $7.069mm^2$. However, the error of estimation was increased at the small breach with area less than $0.785mm^2$. A future study will be conducted to estimate a damaged area with more accuracy and precision.

Seawater-driven forward osmosis for direct treatment of municipal wastewater

  • Sun, Yan;Bai, Yang;Tian, Jiayu;Gao, Shanshan;Zhao, Zhiwei;Cui, Fuyi
    • Membrane and Water Treatment
    • /
    • 제8권5호
    • /
    • pp.449-462
    • /
    • 2017
  • Direct treatment of municipal wastewater by forward osmosis (FO) process was evaluated in terms of water flux decline, reverse salt diffusion, pollutants rejection and concentration efficiency by using synthetic seawater as the draw solution. It was found that when operating in PRO mode (active layer facing the draw solution), although the FO membrane exhibited higher osmotic water flux, more severe flux decline and reverse salt diffusion was also observed due to the more severe fouling of pollutants in the membrane support layer and accompanied fouling enhanced concentration polarization. In addition, although the water flux decline was shown to be lower for the FO mode (active layer facing the feed solution), irreversible membrane fouling was identified in both PRO and FO modes as the water flux cannot be restored to the initial value by physical flushing, highlighting the necessity of chemical cleaning in long-term operation. During the 7 cycles of filtration conducted in the experiments, the FO membrane exhibited considerably high rejection for TOC, COD, TP and $NH_4{^+}-N$ present in the wastewater. By optimizing the volume ratio of seawater draw solution/wastewater feed solution, a concentration factor of 3.1 and 3.7 was obtained for the FO and PRO modes, respectively. The results demonstrated the validity of the FO process for direct treatment of municipal wastewater by using seawater as the draw solution, while facilitating the subsequent utilization of concentrated wastewater for bioenergy production, which may have special implications for the coastline areas.

Harvesting of microalgae via submerged membranes: flux, fouling and its reversibility

  • Elcik, Harun;Cakmakci, Mehmet
    • Membrane and Water Treatment
    • /
    • 제8권5호
    • /
    • pp.499-515
    • /
    • 2017
  • The purpose of this study was to investigate membrane fouling caused by microalgal cells in submerged membrane systems consisting of polymeric and ceramic microfiltration membranes. In this study, one polymeric (flat-sheet, pore size: $0.2{\mu}m$) and two ceramic (flat-sheet, pore size: $0.2{\mu}m$ and cylindrical, pore size: $1{\mu}m$) membranes were used. Physical cleaning was performed with water and air to determine the potential for reversible and irreversible membrane fouling. The study results showed that substantial irreversible membrane fouling (after four filtration cycles, irreversible fouling degree 27% (cleaning with water) and 38% (cleaning with air)) occurs in the polymeric membrane. In cleaning studies performed using water and air on ceramic membranes, it was observed that compressed air was more effective (recovery rate: 87-91%) for membrane cleaning. The harvesting performance of the membranes was examined through critical flux experiments. The critical flux values for polymeric membrane with a pore size of $0.20{\mu}m$ and ceramic membranes with a pore size of $0.20{\mu}m$ and $1{\mu}m$ were ${\leq}95L/m^2hour$, ${\leq}70L/m^2hour$ and ${\leq}55L/m^2hour$, respectively. It was determined that critical flux varies depending on the membrane material and the pore size. To obtain more information on membrane fouling caused by microalgal cells, the characterization of the fouled polymeric membrane was performed. This study concluded that ceramic membranes with a pore size of $0.2-1{\mu}m$ in the submerged membrane system could be efficiently used for microalgae harvesting by cleaning the membrane with compressed air at regular intervals.

관형 알루미나 세라믹 한외여과막에 의한 고도정수처리 시스템에서 물 역세척의 영향 (Effect of Water-back-flushing in Advanced Water Treatment System by Tubular Alumina Ceramic Ultrafiltration Membrane)

  • 박진용;이송희
    • 멤브레인
    • /
    • 제19권3호
    • /
    • pp.194-202
    • /
    • 2009
  • 본 연구에서 처리수를 이용한 주기적인 역세척은 춘천시 공지천의 관형 세라믹 한외여과막에 의한 고도정수처리 시스템에서 막오염을 저감하고 투과선속을 향상시키고자 수행되었다. 일정한 역세척 시간(BT) 15초에서 여과시간 즉, 물 역세척 주기(FT) 2분이 가장 높은 무차원 투과선속(초기 투과선속에 대한 투과선속)과 가장 낮은 막오염 저항값을 보였다. 또한, FT 10분으로 고정한 BT 영향의 결과에서 BT 20초가 가장 낮은 막오염 저항과 가장 높은 무차원 투과선속을 나타내어, 가장 많은 총여과부피 107.3 L를 얻을 수 있었다. 결론적으로 공지천의 정수처리에서 FT 10분과 BT 20초가 최적조건으로 관형 알루미나 정밀여과의 선행 연구결과와 정확히 일치하였다. 한편 관형 세라믹 한외여과 시스템에 의한 오염물질 평균제거율은 탁도 97.0%, 망간법에 의한 COD 32.1%, 암모니아성 질소 28.8%, 총인 54.4%로 나타났다.