DOI QR코드

DOI QR Code

Using response surface methodology and Box-Behnken design in the study of affecting factors on the dairy wastewater treatment by MEUF

  • Khosroyar, Susan (Department of Chemical Engineering, Quchan branch, Islamic Azad University) ;
  • Arastehnodeh, Ali (Department of Chemical Engineering, Quchan branch, Islamic Azad University)
  • 투고 : 2017.06.22
  • 심사 : 2018.03.15
  • 발행 : 2018.09.25

초록

Micelle-Enhanced Ultrafiltration (MEUF) is a membrane separation processes that improving ultrafiltration process with the formation of micelles of the surface active agents. Surface active agents are widely used to improve membrane processes due to the ability to trap organic compounds and metals in the treatment of industrial waste water. In this study, surface active agents are used to improve micelle-enhanced ultrafiltration (MEUF) to reduce chemical oxygen demand (COD), total dissolved solid (TDS), turbidity and clogging the membrane in dairy wastewater treatment. Three important operational factors (anionic surface active agent concentration, pressure and pH) and these interactions were investigated by using response surface methodology (RSM) and Box-Behnken design. Results show that due to the concentration polarization layer and increase the number of Micelles; the anionic surface active agent concentration has a negative effect on the flux and has a positive effect on the elimination of contamination indices. pH, and the pressure have the greatest effect on flux. On the other hand, it could be stated that these percentages of separation are in the percentages range of Nano-filtration (NF). While MEUF process has higher flux than NF process. The results have been achieved at lower pressure while NF process needs high pressure, thus making MEUF is the replacement for the NF process.

키워드

참고문헌

  1. Arbeli, Z., Brenner, A. and Abeliovich, A. (2006), "Treatment of high-strength dairy wastewater in an anaerobic deep reservoir: Analysis of the methanogenic fermentation pathway and the rate-limiting step", Water Res., 40(19), 3653-3659. https://doi.org/10.1016/j.watres.2006.06.017
  2. Baek, K. and Yang, J.W. (2004), "Micellar-enhanced ultrafiltration of chromate and nitrate: Binding competition between chromate and nitrate", Desalination, 167, 111-118. https://doi.org/10.1016/j.desal.2004.06.118
  3. Bezerra, M. Santelli, R. Oliveira, E. and Leonardo, S. (2008), "Response surface methodology (RSM) as a tool for optimization in analytical chemistry", Talanta, 76(5), 965-977. https://doi.org/10.1016/j.talanta.2008.05.019
  4. Carta, F., Pereda, J., Alvarez, P., Romero, F., Duran, M.M. and Mateos, F. (2004), "Aerobic purification of dairy wastewater in continuous regime part I: Analysis of the biodegradation process in two reactor configurations", Biochem. Eng. J., 21(2), 183-191. https://doi.org/10.1016/j.bej.2004.06.007
  5. El-Abbassi, A., Khayet, M. and Hafidi, A., (2011), "Micellar enhanced ultrafiltration process for the treatment of olive mill wastewater", Water Res., 45(15), 4522-4530. https://doi.org/10.1016/j.watres.2011.05.044
  6. Huang, J., Zeng, G., Qu, Y. and Zhang, Z. (2007), "Adsorption characteristics of zinc ions on sodium dodecyl sulfate in process of micellar-enhanced ultrafiltration", Trans. Nonferrous Metals Soc. China, 17(5), 1112-1117. https://doi.org/10.1016/S1003-6326(07)60234-9
  7. Huang, J.H., Zeng, G.M., Fang, Y.Y., Qu, Y.H. and Li, X. (2009), "Removal of cadmium ions using micellar-enhanced ultrafiltration with mixed anionic-nonionic surfactants", J. Membr. Sci., 326(2), 303-309. https://doi.org/10.1016/j.memsci.2008.10.013
  8. Huang, J.H., Zhou, C.F., Zeng, G.M., Li, X., Niu, J., Huang, H.J., Shi, L.J. and He, S.B. (2010), "Micellar-enhanced ultrafiltration of methylene blue from dye wastewater via a polysulfone hollow fiber membrane", J. Membr. Sci., 365(2), 138-144. https://doi.org/10.1016/j.memsci.2010.08.052
  9. Huang, J., Shi, Y., Zeng, G., Gu, Y., Chen, G., Shi, L., Yi, H., Bi, T. and Zhou, J. (2016), "Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview", Chemosphere, 157, 137-151. https://doi.org/10.1016/j.chemosphere.2016.05.032
  10. Khajeh, M. and Sanchooli, E. (2010), "Optimization of microwave-assisted extraction procedure for zinc and iron determination in celery by Box-Behnken design", Food Anal. Methods., 3(2), 75-79. https://doi.org/10.1007/s12161-009-9086-z
  11. Landaburu-Aguirre, J., Pongracz, E., Peramakic, P. and Keiskia, R.L. (2010), "Micellar-enhanced ultrafiltration for the removal of cadmium and zinc: Use of response surface methodology to improve understanding of process performance and optimization", J. Hazard. Mater., 180(1-3), 524-534. https://doi.org/10.1016/j.jhazmat.2010.04.066
  12. Landaburu-Aguirre, J. (2012). "Micellar-enhanced ultrafiltration for the removal of heavy metals from phosphorous-rich wastewaters: From end-of-pipe to clean technology", Acta Universitatis Ouluensis C, 428.
  13. Luo, F., Zeng, G.M., Huang, J.H., Zhang, C., Fang, Y.Y., Qu, Y.H., Li, X., Lin, D. and Zhou, C.F. (2010), "Effect of groups difference in surfactant on solubilization of aqueous phenol using MEUF", J. Hazard. Mater., 173(1), 455-461. https://doi.org/10.1016/j.jhazmat.2009.08.106
  14. Luo, J., Ding, L., Qi, B., Jaffrin, M. and Wana, Y. (2011a), "A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater", Bioresour. Technol., 102(16),7437-7442. https://doi.org/10.1016/j.biortech.2011.05.012
  15. Luo, J. and Ding, L. (2011b), "Influence of pH on treatment of dairy wastewater by nanofiltration using shear-enhanced filtration system", Desalination, 278(1), 150-156. https://doi.org/10.1016/j.desal.2011.05.025
  16. Luo, J., Ding, L., Wan, Y. and Jaffrin, Y. (2012), "Threshold flux for shear-enhanced nanofiltration: Experimental observation in dairy wastewater treatment", J. Membr. Sci., 409, 276-284.
  17. El Zeftawy, M.M., and Mulligan, C.N. (2011), "Use of rhamnolipid to remove heavy metals from wastewater by micellar-enhanced ultrafiltration (MEUF)", Separ. Purif. Technol., 77(1), 120-127. https://doi.org/10.1016/j.seppur.2010.11.030
  18. Naengiamong, C., Kweon, J.H., Cho, J., Polprasert, C. and Ahn, K.H. (2005), "Membrane fouling caused by extracellular polymeric substances during microfiltration processes", Desalination, 179(16), 17-24.
  19. Puasa, S.W., Ruzitah, M.S. and Sharifah, A.S.A.K. (2011), "An overview of micellar-enhanced ultrafiltration in wastewater treatment process", International Conference on Environment and Industrial Innovation, Kuala Lumpur, Malaysia, June.
  20. Purkait, M.K., Gupta, S.D. and De, S. (2004), "Resistance in series model for micellar-enhanced ultrafiltration of eosin dye", J. Colloid Interface Sci., 270(2), 496-506. https://doi.org/10.1016/j.jcis.2003.10.030
  21. Rahmanian, B., Pakizeha, M. and Maskooki, A. (2010), "Micellarenhanced ultrafiltration of zinc in synthetic wastewater using spiral-wound membrane", J. Hazard. Mater., 184(1-3), 261-267. https://doi.org/10.1016/j.jhazmat.2010.08.031
  22. Rahmanian, B., Pakizeh, M., Esfandyari, M., Heshmatnezhad, F. and Maskooki, A. (2011a), "Fuzzy modeling and simulation for lead removal using micellar-enhanced ultrafiltration (MEUF)", J. Hazard. Mater., 192(2), 585-592. https://doi.org/10.1016/j.jhazmat.2011.05.051
  23. Rahmanian, B., Pakizeh, M., Mansoori, S.A.A. and Abedini, R. (2011b), "Application of experimental design approach and artificial neural network (ANN) for the determination of potential micellar-enhanced ultrafiltration process", J. Hazard. Mater., 187(1), 67-74. https://doi.org/10.1016/j.jhazmat.2010.11.135
  24. Samper, E., Rodriguez, M., de La Rubia, M.A. and Prats, D. (2009), "Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS)", Sep. Purif. Technol., 65(3), 337-342. https://doi.org/10.1016/j.seppur.2008.11.013
  25. Shi, Y., Huang, J., Zeng, G., Gu, Y., Chen, Y., Hu, Y., Tang, B., Zhou, J., Yang, Y. and Shi, L. (2017), "Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview", Chemosphere, 180, 396-411. https://doi.org/10.1016/j.chemosphere.2017.04.042
  26. Switzar, L., Giera, M., Lingeman, H., Irth, H. and Niessen, W.M. (2011), "Protein digestion optimization for characterization of drug-protein adducts using response surface modeling", J. Chromatogr., 1218(13), 1715-1723. https://doi.org/10.1016/j.chroma.2010.12.043
  27. Talebpour, Z., Ghassempour, A., Abbaci, M. and Aboul-Enein, H.Y. (2009), "Optimization of microwave-assisted extraction for the determination of glycyrrhizin in menthazin herbal drug by experimental design methodology", Chromatographia, 70(1), 191-197. https://doi.org/10.1365/s10337-009-1146-4
  28. Yamato, N., Kimura, K., Miyoshi, T. and Watanabe, Y. (2006), "Diffrence in membrane fouling in membrane bioreactors (MBRs) caused by membrane polymer materials", J. Membr. Sci., 280(1), 911-920. https://doi.org/10.1016/j.memsci.2006.03.009
  29. Yavuz, Y., Ocal, E., Koparala, A. and Ogutveren, U. (2011), "Treatment of dairy industry wastewater by EC and EF processes using hybrid Fe-Al plate electrodes", J. Chem. Technol. Biotechnol., 86(7), 964-969. https://doi.org/10.1002/jctb.2607
  30. Zeng, G.M., Li, X., Huang, J.H., Zhang, C., Zhou, C.F., Niu, J., Shi, L.J., He, S.B. and Li, F. (2011), "Micellar-enhanced ultrafiltration of cadmium and methylene blue in synthetic wastewater using SDS", J. Hazard. Mater., 185(2), 1304-1310. https://doi.org/10.1016/j.jhazmat.2010.10.046

피인용 문헌

  1. Single- and multi-stage dairy wastewater treatment by vibratory membrane separation processes vol.11, pp.6, 2018, https://doi.org/10.12989/mwt.2020.11.6.383