Effect of Water-back-flushing in Advanced Water Treatment System by Tubular Alumina Ceramic Ultrafiltration Membrane

관형 알루미나 세라믹 한외여과막에 의한 고도정수처리 시스템에서 물 역세척의 영향

  • Park, Jin-Yong (Department of Environmental Sciences & Biotechnology, Hallym University) ;
  • Lee, Song-Hui (Department of Environmental Sciences & Biotechnology, Hallym University)
  • 박진용 (한림대학교 환경생명공학과) ;
  • 이송희 (한림대학교 환경생명공학과)
  • Published : 2009.09.30

Abstract

In this study periodic water-back-flushing using permeate water was performed to minimize membrane fouling and to enhance permeate flux in advanced water treatment by tubular ceramic ultrafiltration membrane for Gongji stream in Chuncheon city. The back-flushing period (FT, filtration time) 2 min with periodic water-back-flushing of 15 sec showed the highest value of dimensionless permeate flux (permeate flux vs. initial permeate flux), and the lowest value of resistance of membrane fouling. Also in the results of BT effect at fixed FT 10 min, BT (back-flushing time) 20 sec showed the lowest value of resistance of membrane fouling and the highest value of dimensionless permeate flux, and we could be obtained the highest total permeate volume of 107.3 L. Consequently FT 10 min and BT 20 sec could be the optimal condition in Gongji stream water treatment, which was the exactly same results of our previous tubular alumina microfiltration. Then the average rejection rates of pollutants by our tubular ceramic UF system were 97.0% for turbidity, 32.1 % for chemical oxygen demand by manganese method, 28.8% for ammoniac nitrogen and 54.4% for T-P.

본 연구에서 처리수를 이용한 주기적인 역세척은 춘천시 공지천의 관형 세라믹 한외여과막에 의한 고도정수처리 시스템에서 막오염을 저감하고 투과선속을 향상시키고자 수행되었다. 일정한 역세척 시간(BT) 15초에서 여과시간 즉, 물 역세척 주기(FT) 2분이 가장 높은 무차원 투과선속(초기 투과선속에 대한 투과선속)과 가장 낮은 막오염 저항값을 보였다. 또한, FT 10분으로 고정한 BT 영향의 결과에서 BT 20초가 가장 낮은 막오염 저항과 가장 높은 무차원 투과선속을 나타내어, 가장 많은 총여과부피 107.3 L를 얻을 수 있었다. 결론적으로 공지천의 정수처리에서 FT 10분과 BT 20초가 최적조건으로 관형 알루미나 정밀여과의 선행 연구결과와 정확히 일치하였다. 한편 관형 세라믹 한외여과 시스템에 의한 오염물질 평균제거율은 탁도 97.0%, 망간법에 의한 COD 32.1%, 암모니아성 질소 28.8%, 총인 54.4%로 나타났다.

Keywords

References

  1. T. Leiknes, H. Odegaard, and H. Myklebust, 'Removal of natural organic matter (NOM) in drinking water treatment by coagulation-microfiltration using metal membranes', J. Membr. Sci., 242, 47 (2004) https://doi.org/10.1016/j.memsci.2004.05.010
  2. J. I. Oha and S. H. Lee, 'Influence of streaming potential on flux decline of microfiltration with in-line rapid pre-coagulation process for drinking water production', J. Membr. Sci., 254, 39 (2005) https://doi.org/10.1016/j.memsci.2004.12.030
  3. L. Fiksdal and T. O. Leiknes, 'The effect of coagulation with MF/UF membrane filtration for removal of virus in drinking water', J. Membr. Sci., 279, 364 (2006) https://doi.org/10.1016/j.memsci.2005.12.023
  4. A. R. Costa and M. N. Pinho, 'Performance and cost estimation of nanofiltration for surface water treatment in drinking water production', Desalination, 196, 55 (2006) https://doi.org/10.1016/j.desal.2005.08.030
  5. Y. T. Lee and J. K. Oh, 'A study on the optimization of process and operation condition for membrane system in tap water treatment', Membrane Journal, 9(4), 193 (1999)
  6. M. H. Kim and J. Y. Park, 'Membrane fouling control effect of periodic water-back-flushing in the tubular carbon ceramic ultrafiltration system for recycling paper wastewater', Membrane Journal, 11(4), 190 (2001)
  7. Y. T. Lee and J. K. Oh, 'Membrane fouling effect with organic-inorganic materials using the membrane separation in drinking water treatment process', Membrane Journal, 13(4), 219 (2003)
  8. W. Yuan, A. Kocic, and A. L. Zydney, 'Analysis of humic acid fouling during microfiltration using a pore blockage-cake filtration model', J. Membr Sci., 198, 51 (2002) https://doi.org/10.1016/S0376-7388(01)00622-6
  9. D. B. Mosqueda-Jimenez and P. M. Huck, 'Characterization of membrane foulants in drinking water treatment', Desalination, 198, 173 (2006) https://doi.org/10.1016/j.desal.2005.12.025
  10. M. Heran and S. Elmaleh, 'Microfiltration through an inorganic tubular membrane with high frequency retrofiltration', J. Membr. Sci., 188, 181 (2001) https://doi.org/10.1016/S0376-7388(01)00351-9
  11. S. K. Karode, 'Unsteady state flux response: a method to determine the nature of the solute and gel layer in mambrane filtration' J. Membr. Sci., 188, 9 (2001) https://doi.org/10.1016/S0376-7388(00)00644-X
  12. P. Rai, C. Rai, G. C. Majumdara, S. D. Gupta, and S. De, 'Resistance in series model for ultrafiltration of mosambi (Citrus sinensis (L.) Osbeck) juice in a stirred continuous mode' J. Membr. Sci., 283, 116 (2006) https://doi.org/10.1016/j.memsci.2006.06.018
  13. K. Katsoufidou, S. G. Yiantsios, and A. J. Karabelas, 'A study of ultrafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling', J. Membr. Sci., 266, 40 (2005) https://doi.org/10.1016/j.memsci.2005.05.009
  14. J. Y. Park, S. J. Choi, and B. R. Park, 'Effect of N_2- back-flushing in multichannels ceramic microfiltration system for paper wastewater treatment', Desalination, 202, 207 (2007) https://doi.org/10.1016/j.desal.2005.12.056
  15. D. Chen, L. K. Weavers, and H. W. Walker, 'Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics', Water Research, 40, 840 (2006) https://doi.org/10.1016/j.watres.2005.12.031
  16. Y. J. Yuk and K. H. Youm, 'Enhancement of ultrafiltration performance using ultrasound', Membrane Journal, 13(4), 283 (2003)
  17. W. F. Jones, R. L. Valentine, and V. G. J. Rodgers, 'Removal of suspended clay from water using transmembrane pressure pulsed microfil- tration', J. Membr. Sci., 157, 199 (1999) https://doi.org/10.1016/S0376-7388(98)00376-7
  18. F. Malek, J. L. Harris, and F. A. Roddick, 'Interrelationship of photooxidation and microfiltration in drinking water treatment', J. Membr. Sci., 281, 541 (2006) https://doi.org/10.1016/j.memsci.2006.04.045
  19. J. Y. Park, 'Effect of water-back-flushing time on recovery efficiency in ceramic filtration system for paper wastewater treatment', Membrane Journal, 14(4), 329 (2004)
  20. E. O. Kim, 'Application of Ceramic Membrane', Membrane Journal, 3(1), 12 (1993)
  21. S. K. Kang, K. H. Kim, H. S. Lee, and D. S. Bae, 'R&D Trend and Information Analysis of Ceramic Membrane for Water Treatment', Korean Industrial Chemistry News, 7(3), 83 (2004)
  22. J. Y. Park and A Reum Lee, 'Effect of periodic water-back-flushing time and period in water treatment by tubular alumina ceramic microfiltration', Korean Membr. J., 10(1), 33 (2008)
  23. H. C. Lee, J. H. Cho, and J. Y. Park, 'Effect of water-back-flushing time and period in advanced water treatment system by ceramic microfiltration', Membrane Journal, 18(1), 26 (2008)
  24. Editorial Department of Dongwa Technology, 'Standard Method of Water Pollution', pp.133-204, Dongwa Technology Publishing Co., Gyeonggi, Korea (2002)
  25. A. D. Eaton, L. S. Clesceri, and A. E. Greenberg, 'Standard methods for the examination of water and wastewater', 9th Ed., pp. 2-8, APHA, NW Washington, DC (1995)