• 제목/요약/키워드: field-effect

검색결과 12,359건 처리시간 0.041초

Graphene Characterization and Application for Field Effect Transistors

  • Yu, Young-Jun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.72-72
    • /
    • 2012
  • The next generation electronics need to not only be smaller but also be more flexible. To meet such demands, electronic devices using two dimensional (2D) atomic crystals have been studied intensely. Especially, graphene which have unprecedented performance fulfillments in versatile research fields leads a parade of 2D atomic crystals. In this talk, I will introduce the electrical characterization and applications of graphene for prominently electrical transistors realization. Even the rising 2D atomic crystals such as hexagonal boron nitride (h-BN), molybdenum disulfide (MoS2) and organic thin film for field effect transistor (FET) toward competent enhancement will be mentioned.

  • PDF

자기전해복합경면가공의 개발에 관한 연구(제 1보) -전해공정에 미치는 자기장의 영향- (Development of The Magnetic -Electrolytic-Abrasive Polishing (MEAP) (1st) -Effect of magnetic field on electrolytic finishing process-)

  • 김정두
    • 한국생산제조학회지
    • /
    • 제4권3호
    • /
    • pp.25-30
    • /
    • 1995
  • A new finishing process, magnetic-electrolytic-abrasive polishing(MEAP), combining Lorentz' force effect in the traditional electrolytic finishing process was developed to realize the high efficiency as well as high surface quality of finishing . The paper describes the theoretical basis about the modification of electrolytic ions motion by the magnetic field. The effect of magnetic field on the electrolytic process was discussed was and analyzed from the result of model test.

  • PDF

Wake Field Effect from the Undulator Vacuum Chamber in PAL-XFEL

  • 박용운
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.151.1-151.1
    • /
    • 2014
  • Wake field effect on the electron beam from the undulator chamber in PAL-XFEL is analyzed. The wake field takeover some energy from the electron beam which will increase the energy spread of the electron beam. This will cause the degradation of the radiation power in PAL-XFEL. To decrease the effect, the surface of the undulator vacuum chamber should be fabricated with 200 nm surface roughness and 5 nm oxidation layer. In this presentation, the numerical calculation of the wake will be shown. Simulation results of the radiation generation in PAL-XFEL also will be presented.

  • PDF

Dependency of Tunneling Field-Effect Transistor(TFET) Characteristics on Operation Regions

  • Lee, Min-Jin;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제11권4호
    • /
    • pp.287-294
    • /
    • 2011
  • In this paper, two competing mechanisms determining drain current of tunneling field-effect transistors (TFETs) have been investigated such as band-to-band tunneling and drift. Based on the results, the characteristics of TFETs have been discussed in the tunneling-dominant and drift-dominant region.

Ambipoalr light-emitting organic field-effect transistor using a wide-band-gap blue-emitting molecule

  • Sakanoue, Tomo;Yahiro, Masayuki;Adachi, Chihaya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.137-140
    • /
    • 2007
  • We prepared ambipolar organic field-effect transistors and observed blue emission when both hole and electron accumulation layers were in the channel. We found that the reduction of carrier traps and controlling devices' preparation and measurement conditions were crucial for ambipolar operation.

  • PDF

EDISON 시뮬레이션을 활용한 실리콘 나노선 전계 효과 트랜지스터의 소자변수 분석

  • 신종목;박주현;유재영
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제2회(2013년)
    • /
    • pp.210-213
    • /
    • 2013
  • 실리콘 나노선 전계 효과 트랜지스터(Field Effect Transisor: FET)의 특성을 시뮬레이션을 통해 연구하였다. 일반적인 트랜스컨덕턴스(transconductance) 값을 이용하여 소자의 전계 효과 이동도(field effect mobility)를 추출했고, Y-function 방법을 이용하여 저전계 이동도(low field mobility)와 문턱전압(threshold voltage)를 구했다. 채널길이가 10nm로 매우 짧을 때와 100nm의 일반적인 길이 일 때의 전하 이동도 특성을 비교하여 Si 나노선 FET의 쇼트 채널 효과(short channel effect)를 보았다.

  • PDF

Potential Model for L shaped Tunnel Field-Effect-Transistor

  • Najam, Faraz;Yu, Yun Seop
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.170-171
    • /
    • 2016
  • A surface potential model is introduced for L-shaped tunnel field-effect-transistor(L-TFET). Excellent agreement is obtained when model results are compared with TCAD data.

  • PDF

Effect of in-Plane Magnetic Field on Rashba Spin-Orbit Interaction

  • Choi, Won Young;Kwon, Jae Hyun;Chang, Joonyeon;Han, Suk Hee;Koo, Hyun Cheol
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.394-394
    • /
    • 2013
  • The spin-orbit interaction has received great attention in the field of spintronics, because of its property and applicability. For instance, the spin-orbit interaction induces spin precession which is the key element of spin transistor proposed by Datta and Das, since frequency of precession can be controlled by electric field. The spin-orbit interaction is classified according to its origin, Dresselhaus and Rashba spin-orbit interaction. In particular, the Rashba spin-orbit interaction is induced by inversion asymmetry of quantum well structure and the slope of conduction band represents the strength of Rashba spin-orbit interaction. The strength of spin-orbit interaction is experimentally obtained from the Shubnikov de Hass (SdH) oscillation. The SdH oscillation is resistance change of channel for perpendicular magnetic field as a result of Zeeman spin splitting of Landau level, quantization of cyclotron motion by applied magnetic field. The frequency of oscillation is different for spin up and down due to the Rashba spin-orbit interaction. Consequently, the SdH oscillation shows the beat patterns. In many research studies, the spin-orbit interaction was treated as a tool for electrical manipulation of spin. On the other hands, it can be considered that the Rashba field, effective magnetic field induced by Rashba effect, may interact with external magnetic field. In order to investigate this issue, we utilized InAs quantum well layer, sandwiched by InGaAs/InAlAs as cladding layer. Then, the SdH oscillation was observed with tilted magnetic field in y-z plane. The y-component (longitudinal term) of applied magnetic field will interact with the Rashba field and the z-component (perpendicular term) will induce the Zeeman effect. As a result, the strength of spin-orbit interaction was increased (decreased), when applied magnetic field is parallel (anti-parallel) to the Rashba field. We found a possibility to control the spin precession with magnetic field.

  • PDF

CuPc 두께 변화 및 채널 길이 변화에 따른 전계 효과 트랜지스터의 전기적 특성 연구 (Electrical Properties with Varying CuPc Thickness and Channel Length of the Field-effect Transistor)

  • 이호식
    • 한국전기전자재료학회논문지
    • /
    • 제20권1호
    • /
    • pp.47-52
    • /
    • 2007
  • Organic field-effect transistors (OFETS) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with varying channel length. The CuPc FET device was made a top-contact type and the channel length was a $100\;{\mu}m,\;50\;{\mu}m,\;40\;{\mu}m,\;and\;30\;{\mu}m$ and the channel width was a fixed at 3 mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with varying channel length (L) and we calculated the effective mobility. Also, we measured a capacitance-voltage (C-V) by applied bias voltage with varying frequency at 43, 100, 1000 Hz.

전극에 따른 CuPc Field-effect Transistor의 전기적 특성 (Electrical Properties of CuPc Field-effect Transistor with Different Electrodes)

  • 이호식;박용필;천민우
    • 한국전기전자재료학회논문지
    • /
    • 제21권10호
    • /
    • pp.930-933
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40 nm, and the channel length was $50{\mu}m$, channel width was 3 mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.