• Title/Summary/Keyword: field emission

Search Result 2,716, Processing Time 0.04 seconds

Field Emission from Selectively-patterned ZnO Nanorods Synthesized by Solution Chemistry Route

  • Kim, Do-Hyung
    • Korean Journal of Materials Research
    • /
    • v.16 no.7
    • /
    • pp.408-411
    • /
    • 2006
  • An effective wet-chemical approach is demonstrated for growing large-area, selectively-patterned, and low-temperature-synthesized ZnO nanorods (ZNRs). The growth of ZNRs was enhanced on a Co layer. The selectivity and density were readily controlled by the control of the temperature when the substrate transfers into aqueous solution. The cross-sectional transmission electron microscopy image shows that single crystalline ZNRs grown along [0001] have good adhesion at interface between ZNRs/substrate. The turn-on field was 4 $V/{\mu}m$ at the emission current density of 1 ${\mu}A/cm^2$. The stable emission was obtained at 0.11 $mA/cm^2$ under 7.2 $V/{\mu}m$ over 10 hr. These results suggest that selectively-patterned ZNRs have the potential for use as field emitters in large-area field emission displays.

CNT Emitter Coated with Titanium Oxide Nanoparticles for FED Application

  • Kim, Jong-Ung;Ryu, Byong-Hwan;Moon, Hee-Sung;Kim, Jae-Myeong;No, Cho-Hang;Uk, Park-Seoung;Choi, Young-Min
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.937-939
    • /
    • 2007
  • Carbon nanotubes (CNTs) have used as an electron field emitter of the field emission display (FED) due to their characteristics of high-electron emission, rapid response and low power consumption. However, to commercialize the FED with CNT emitter, some fundamental problems regarding life time and emission efficiency have to be solved. In this study, we investigated the $TiO_2$ coated CNT as a field emitter. $TiO_2$ nanoparticles can coated on CNT surface by chemical solution method. $TiO_2$ nanoparticles had uniform size with the average size of about 2.4 nm to 3.1 nm. Field emission performance of CNT coated with $TiO_2$ nanoparticles was evaluated and discussed.

  • PDF

Fabrication and Field Emission Properties of Dot-patterned CNT Emitters using Mechanically Dispersed Photosensitive CNT paste (기계적 분산 처리한 CNT 페이스트의 제조와 Dot 패턴된 에미터의 전계방출 특성)

  • Lee, Han-Sung;Jeon, Ji-Hyeon;Kim, Jin-Hee;Goak, Jeung-Choon;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.450-451
    • /
    • 2007
  • Dot-patterned carbon nanotube (CNT) emitters with excellent field emission properties were fabricated using photosensitive CNT paste. We carried out a parametric study on the compositions and the fabrication processes of the paste, in particular, by ball milling CNTs, which were optimized in terms of dot shapes and their field emission characteristics. The ball milling process improved the field emission current of the dot-patterned CNT emitters several times higher than that of the non-milled paste.

  • PDF

Effects of Materials Composition in CNT Paste on Field Emission Properties in Carbon Nanotube Cathodes (인쇄용 페이스트의 조성변화가 탄소나노튜브 캐소드의 전계방출 특성에 미치는 영향)

  • Choi, Woo-Suk;Shin, Heo-Young;Kim, Dong-Hee;Ahn, Byung-Gun;Chung, Won-Sub;Lee, Dong-Gu;Cho, Young-Rea
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.663-667
    • /
    • 2003
  • The effects of paste materials on field emission properties in a carbon nanotube(CNT) cathode were investigated for high-efficient field emission displays. The major components in CNT paste for screen printing were a metallic Ag-paste, a dielectric glass-frit and CNT ink. The emission current from the cathode by an electron tunneling effect increased with an increase in the dielectric material fraction in the CNT paste, which is related to an increase of field enhancement factor in Fowler-Nordheim equation. The surface treatment used, after soft baking of the screen-printed CNT films, greatly affected the decrease in the turn-on field in CNT cathode and the uniformity of emission sites over the entire CNT film area.

Effect of an AI underlayer on the Growth of Carbon Nanotubes and Their Field Emission Characteristics (알루미늄 하부층이 탄소나노튜브의 성장 및 전계방출 특성에 미치는 영향)

  • Lee, Seung-Hwan;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Nae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.162-172
    • /
    • 2008
  • We studied the effect of an Al underlayer on the growth of carbon nanotubes (CNTs) and their field emission characteristics, First of all, CNTs were grown on the Invar catalyst layers with different thickness of 1 to 10 nm, showing that the CNT length was saturated for the catalyst 5 nm or thicker. The CNTs grown on the 5-nm-thick catalyst were ${\sim}10{\mu}m$ long and ${\sim}30nm$ in diameter. Second, an Al underlayer was applied between the catalyst layer and the Ti diffusion barrier to reduce the diameters of CNTs for better field emission properties by forming spherical Al oxide particles on which smaller catalyst nanoparticles would occur. The optimal thickness of an Al underlayer underneath the 5-nm-thick catalyst was ${\sim}15nm$, producing the CNTs with the length of ${\sim}15{\mu}m$ and the diameter of ${\sim}15nm$. The field emission measurements, following the tape activation, showed that the thinner and longer CNTs gave rise to better field emission performance with the lower turn-on and threshold electric fields.

Electron field emission from various CVD diamond films

  • Usikubo, Koji;Sakamoto, Yukihiro;Takaya, Matsufumi
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.385-388
    • /
    • 1999
  • Electron field emission properties from various CVD diamond films were studied. Diamond films were synthesized by microwave plasma CVD at 1173K and at 673K substrates temperature and pulse microwave plasma CVD at 1173K. B-doped diamond film was synthesized by microwave plasma CVD at 1173K also. Estimation by SEM, both the non-doped diamond film and B-doped diamond film which were synthesized at 1173K substrate temperature were $2~3\mu\textrm{m}$ in diameter and nucleation densities were $10^{8}{\;}numbers/\textrm{cm}^2$ order. The diamond film synthesized at 673K was $0.2\mu\textrm{m}$ in diameter and nucleation densities was 109 numbers/cm2 order. The diamond film synthesized by pulse microwave plasma CVD at 1173K was $0.2\mu\textrm{m}$ in diameter and nucleation density was $10^{9}{\;}numbers/\textrm{cm}^2$ order either. From the result of electron field emission measurement, electron field emission at $20V/\mu\textrm{m}$ from CVD diamond film synthesized by pulse microwave plasma CVD was $37.3\mu\textrm{A}/\textrm{cm}^2$ and the diamond film showed the best field emission property comparison with other CVD diamond.

  • PDF

Adsorption of residual gases on carbon nanotubes and their field emission properties

  • Lee, Han-Sung;Jang, Eun-Soo;Goak, Jeung-Choon;Kim, Jin-Hee;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.51-51
    • /
    • 2008
  • Carbon nanotubes (CNTs) have long been reported as an ideal material due to their excellent electrical conductivity and chemical and mechanical stability as well as their high aspect ratios for field emission devices. CNT emitters made by screen printing the organic binder-based CNT paste may act as a source to release gases inside a vacuum panel. These residual gases may cause a catastrophic damage by electrical arcing or ion bombardment to the vacuum microelectronic devices and may change their physical or electrical properties by adsorbing on the CNT emitter surface. In this study, we analyzed the composition of residual gases inside the vacuum-sealed panel by residual gas analyzer (RGA), investigating the effects of individual gases of different kinds at several pressures on the field emission characteristics of CNT emitters. The residual gases included $H_2$, CO, $CO_2$, $N_2$, $CH_4$, $H_2O$, $C_2H_6$, and Ar. Effect of residual gases on the field emission was studied by observing the variation of the pulse voltages with the duty ratio of3.3% to keep the constant emission current of $28{\mu}A$. Each gas species was introduced to a vacuum chamber up to three different pressures ($5\times10^{-7}$, $5\times10^{-6}$, and $5\times10^{-5}$ torr) each for 1 h while electron emission was continued. The three different pressure regions were separated by keeping a high vacuum of $\sim10^{-8}$ torr for a 1 h. The emission was terminated 6 h after the third gas exposure was completed. Field emission characteristics under residual gases will be discussed in terms of their adsorption and desorption on the surface of CNTs and the resultant change of work function.

  • PDF

Formulation of Carbon Nanotube Paste and Its Optimization for Field Emission Display Applications

  • Kim, Yong-C.;Sohn, K.H.;Cho, Y.M.;Yoo, Eun-H.;Lee, Dong-Gu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.696-699
    • /
    • 2004
  • Of the emissive display technologies, field emission displays using pasted carbon nanotubes offer several advantages over other competing cathode materials such as low driving voltage, possible large-area and low-cost processes. In this study, formulation of carbon nanotube paste and its electron field emission properties are characterized. Also the effects of additive powders and surface morphology on electron emission are reported.

  • PDF

Post-Treatment of Printed Carbon Nanotubes for Vertical Alignment

  • Kim, Yong-C.;Sohn, K.H.;Cho, Y.M.;Yoo, Eun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.692-695
    • /
    • 2004
  • Fabrication of photosensitive carbon nanotubes paste and its post-treatment has been developed for high resolution with good electron emission uniformity. We report novel post-treatment techniques including rubber-rolling and multiple field emission cycling from which we could improve the field emission properties of printed carbon nanotubes. These techniques would be easily applicable to large area field emission display using paste of carbon nanotubes

  • PDF

Field Emission Display with Design Elements for Control of Uniformity, Color Purity, Luminance, and Invisible Spacers.

  • Howard, Emmett M.;Coll, Bernard F.;Dean, Ken A.;Johnson, Michael R.;Johnson, Scott V.;Jaskie, James E.;Li, Hao
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.475-478
    • /
    • 2007
  • A solution for carbon nanotube based field emission displays has been designed and built. The solution makes use of structure layout to control electron beam trajectories, uniformity by use of ballasting, emission anomalies eliminated by selective carbon nanotube growth and invisible spacers to maintain the vacuum gap.

  • PDF