Browse > Article
http://dx.doi.org/10.4313/JKEM.2008.21.2.162

Effect of an AI underlayer on the Growth of Carbon Nanotubes and Their Field Emission Characteristics  

Lee, Seung-Hwan (세종대학교 나노신소재공학부)
Goak, Jeung-Choon (세종대학교 나노신소재공학부)
Lee, Han-Sung (세종대학교 나노신소재공학부)
Lee, Nae-Sung (세종대학교 나노신소재공학부)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.21, no.2, 2008 , pp. 162-172 More about this Journal
Abstract
We studied the effect of an Al underlayer on the growth of carbon nanotubes (CNTs) and their field emission characteristics, First of all, CNTs were grown on the Invar catalyst layers with different thickness of 1 to 10 nm, showing that the CNT length was saturated for the catalyst 5 nm or thicker. The CNTs grown on the 5-nm-thick catalyst were ${\sim}10{\mu}m$ long and ${\sim}30nm$ in diameter. Second, an Al underlayer was applied between the catalyst layer and the Ti diffusion barrier to reduce the diameters of CNTs for better field emission properties by forming spherical Al oxide particles on which smaller catalyst nanoparticles would occur. The optimal thickness of an Al underlayer underneath the 5-nm-thick catalyst was ${\sim}15nm$, producing the CNTs with the length of ${\sim}15{\mu}m$ and the diameter of ${\sim}15nm$. The field emission measurements, following the tape activation, showed that the thinner and longer CNTs gave rise to better field emission performance with the lower turn-on and threshold electric fields.
Keywords
Carbon nanotube; Field emission; Al underlayer; Catalyst; Morphology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Terrones, 'Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes', Annu. Rev. Mater. Res., Vol. 33, p. 419, 2003   DOI   ScienceOn
2 N. S. Xu and S. E. Huq, 'Novel cold cathode materials and applications', Mater. Sci. and Eng. R., Vol. 48, p. 47, 2005   DOI   ScienceOn
3 G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, and O. Zhou, 'Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode', Appl. Phys. Lett., Vol. 81, No. 2, p. 355, 2002   DOI   ScienceOn
4 C. Bower, W. Zhu, D. Shalom, D. Lopez, L. H. Chen, and P. L. Gammel, 'On-chip vacuum microtriode using carbon nanotube field emitters', Appl. Phys. Lett., Vol. 80, No. 20, p. 3820, 2002   DOI   ScienceOn
5 D. S. Chung, S. H. Park, H. W. Lee, J. H. Choi, S. N. Cha, J. W. Kim, J. E. Jang, K. W. Min, S. H. Choi, M. J. Moon, L. S. Lee, C. K. Lee, J. H. Yoo, J. M. Kim, J. E. Jung, Y. W. Jin, Y. J. Park, and J. B. You, 'Carbon nanotube electron emitters with a gated structure using backside exposure processes', Appl. Phys. Lett., Vol. 80, No. 21, p. 4045, 2002   DOI   ScienceOn
6 I. T. Han, H. J. Kim, Y. J. Park, N. S. Lee, J. E. Jang, J. W. Kim, J. E. Jung, and J. M. Kim, 'Fabrication and characterization of gated field emitter arrays with self-aligned carbon nanotubes grown by chemical vapor deposition', Appl. Phys. Lett., Vol. 81, No. 11, p. 2070, 2002   DOI   ScienceOn
7 J. H. Lee, S. H. Lee, W. S. Kim, H. J. Lee, J. N. Heo, T. W. Jeong, C. W. Baik, S. H. Park, S. G. Yu, J. B. Park, Y. W. Jin, J. M. Kim, H. J. Lee, J. W. Moon, M. A. Yoo, J. W. Nam, S. H. Cho, J. S. Ha, T. I. Yoon, J. H. Park, and D. H. Choe, 'Current degradation mechanism of single wall carbon nanotube emitters during field emission', Appl. Phys. Lett., Vol. 89, p. 253155, 2006
8 J. Wang, X. Zhang, W. Lei, M. Xiao, Y. Cui, Y. Di, and F. Mao, 'Residual gas analysis based on carbon nanotube field emission display', J. Vac. Sci. Technol. B., Vol. 25, No. 2, p. 615, 2007   DOI   ScienceOn
9 R. H. Fowler and L. W. Nordheim, 'Electron emission in intense electric fields', Proc. R. Soc. Lond. Ser. A, Vol. 119, No. 781, p. 173, 1928   DOI
10 M. A. Guillorn, X. Yang, A. V. Melechko, D. K. Hensley, M. D. Hale, V. I. Merkulov, M. L. Simpson, L. R. Baylor, W. L. Gardner, D. H. Lowndes, and D. H. Lowndes, 'Vertically aligned carbon nanofiber-based field emission electron sources with an integrated focusing electrode', J. Vac. Sci. Technol. B, Vol. 22, No. 1, p. 35, 2004   DOI   ScienceOn
11 공병윤, 석사학위 졸업논문, '열화학기상증착법 으로 성장된 다중벽 탄소나노튜브의 밀도제어 에 의한 전계방출 특성향상', 세종대학교, 2005
12 M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, 'Raman spectroscopy of carbon nanotubes', Phys. Rep., Vol. 409, No. 2, p. 47, 2005   DOI   ScienceOn
13 J. H. Choi, S. H. Choi, J. H. Han, J. B. Yoo, C. Y. Park, T. W. Jung, S. G. Yu, I. T. Han, and J. M. Kim, 'Enhanced electron emission from carbon nanotubes through density control using in-situ plasma treatment of catalyst metal', J. Appl. Phys., Vol. 94, p. 487, 2003   DOI   ScienceOn
14 W. K. Wong, C. S. Lee, and S. T. Lee., 'Uniform-diameter, aligned carbon nanotubes from microwave plasma-enhanced chemicalvapor deposition', J. Appl. Phys., Vol. 97, p.084307, 2005   DOI   ScienceOn
15 L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, 'Scanning field emission from patterned carbon nanotube films', Appl. Phys. Lett., Vol. 76, No. 15, p. 2071, 2000   DOI   ScienceOn
16 S. C. Lim, K. Lee, I. H. Lee, and Y. H. Lee, 'Field emission and applications of carbon nanotubes', Nano, Vol. 2, p. 69, 2007   DOI   ScienceOn
17 I. T. Han, B. K. Kim, H. J. Kim, M. Yang, Y. W. Jin, S. J. Jung, N. S. Lee, S. K. Kim, and J. M. Kim, 'Effect of Al and catalyst thickness on the growth of carbon nanotubes and application to gated field emitter arrays', Chem. Phys. Lett., Vol. 400, p. 139, 2004   DOI   ScienceOn
18 J. H. Choi, A. R. Zoulkarneev, Y.-J. Park, D. S. Chung, B. K. Song, H. S. Kang, C. W. Baik, I. T. Han, H. J. Kim, M. J. Shin, H. J. Kim, T. S. Oh, Y. W. Jin, J. M. Kim, and N. Lee, 'Optimization of electron beam focusing for gated carbon nanotube field emitter arrays', IEEE Trans. Elec. Dev., Vol 52, No. 12, p. 2584, 2005   DOI   ScienceOn
19 S. Lee and D. Y. Jeon, 'Effect of degassed elements on the degradation behavior of carbon nanotube cathodes in sealed field emission-backlight units', Appl. Phys. Lett., Vol. 88, p. 063502, 2006   DOI   ScienceOn
20 R. Y. Zhang, I. Amlani, J. Baker, J. Tresek, R. K. Tsui, and P. Fejes, 'Chemical vapor deposition of single-walled carbon nanotubes using ultrathin Ni/Al film as catalyst', Nano Lett., Vol. 3, No. 6, p. 731, 2003   DOI   ScienceOn
21 Y. Song and J. Choi, 'Simultaneous carbon nanotube root and stem growth from a single buried catalyst layer', Appl. Phys. Lett., Vol. 88, p. 173108, 2006   DOI   ScienceOn
22 S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, J. Y. Huang, D. Z. Wang, and Z. F. Ren, 'Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes', Appl. Phys Lett., Vol. 84, No. 3, p. 413, 2004   DOI   ScienceOn
23 B. Y. Kong, J. Y. Seon, S. H. Lee, S. J. Jung, N. S. Lee, T. W. Jeong, J. N. Heo, I. T. Han, and J. M. Kim, 'Density control of hi ghly populated carbon nanotubes grown by thermal chemical vapor deposition to improve their field emission characteristics', J. Korean Phys. Soc., Vol. 45, No. 6, p. 1580, 2004