DOI QR코드

DOI QR Code

Field Emission from Selectively-patterned ZnO Nanorods Synthesized by Solution Chemistry Route

  • Kim, Do-Hyung (Department of Physics, Kyungpook National University)
  • Published : 2006.07.27

Abstract

An effective wet-chemical approach is demonstrated for growing large-area, selectively-patterned, and low-temperature-synthesized ZnO nanorods (ZNRs). The growth of ZNRs was enhanced on a Co layer. The selectivity and density were readily controlled by the control of the temperature when the substrate transfers into aqueous solution. The cross-sectional transmission electron microscopy image shows that single crystalline ZNRs grown along [0001] have good adhesion at interface between ZNRs/substrate. The turn-on field was 4 $V/{\mu}m$ at the emission current density of 1 ${\mu}A/cm^2$. The stable emission was obtained at 0.11 $mA/cm^2$ under 7.2 $V/{\mu}m$ over 10 hr. These results suggest that selectively-patterned ZNRs have the potential for use as field emitters in large-area field emission displays.

Keywords

References

  1. M. H. Huang, S, Mao H. Feick, H. Yan, W Wu, H. Kind, E, Weber, R, Russo and P. Yang, Science, 292, 1897 (2001) https://doi.org/10.1126/science.1060367
  2. H. Kind, H. Yan, B. Messer, M. Law and P. Yang, Adv Mater., 14, 158 (2002) https://doi.org/10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W
  3. S. H. Jo, J. Y Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini and J. T. Fourkas, Appl. Phys Lett., 394, 4821 (2003) https://doi.org/10.1063/1.1631735
  4. C. J. Lee, T. J. Lee, S, C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, Appl. Phys. Lett., 81, 3648 (2002) https://doi.org/10.1063/1.1518810
  5. D.-H. Kim and H. R. Lee, J. Korean Phys. Soc., 45, L803 (2004)
  6. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, Appl. Phys. Lett., 84, 3654 (2004) https://doi.org/10.1063/1.1738932
  7. K. Keis, E. Magnusson, H. Lindstorrn, S. E. Lindquist and A. Hagfeldt, Sol. Energy Mater., 73, 51 (2002) https://doi.org/10.1016/S0927-0248(01)00110-6
  8. M. H. Zhao, Z. L.Wang and S. Mao, Nano Lett., 4, 587 (2004) https://doi.org/10.1021/nl035198a
  9. W. I. Park, J. Y. Yoo and G.-C. Yi, J. Korean Phys, Soc., 46, L1067 (2005)
  10. W X. Wang, C. J. Summers and Z. L. Wang, Nano Lett., 4, 423 (2004) https://doi.org/10.1021/nl035102c
  11. B. Liu and C. J. Zeng, J. Am. Chem. Soc., 125, 4430 (2003) https://doi.org/10.1021/ja0299452
  12. L. Guo, S. H. Yang, C. L. Yang, J. N. Wang and W. K. Ge, Chem. Mater., 12, 2268 (2000) https://doi.org/10.1021/cm9907817
  13. S. Yamabi and H. J. Imai, Mater, Chem., 12, 3773 (2002) https://doi.org/10.1039/b205384e
  14. L. Vayssieres, Adv. Mat., 15, 464 (2003) https://doi.org/10.1002/adma.200390108
  15. R. H. Fowler and L. Nordheim, Proc. R. Soc, London Ser., A 119, 173 (1928) https://doi.org/10.1098/rspa.1928.0091
  16. X. Bai, E. G Wang, P. Gao and Z. L. Wang, Nano Lett., 3, 1147 (2003) https://doi.org/10.1021/nl034342p
  17. P. G. Collinse and A. Zettl, Phys. Rev., B79, 2811 (1997) https://doi.org/10.1103/PhysRevLett.79.2811
  18. J. M. Bonard, F. Maier, T. Stocjli, A. Chatelain, W.A. de Heer, J. M. Salvetat and L. Forro, Ultramicroscopy, 73, 7 (1998) https://doi.org/10.1016/S0304-3991(97)00129-0
  19. D. -H. Kim, H. -R. Lee, M. -W. Lee, J. -H. Lee, Y. -H. Song, J. -G. Jee and S. - Y. Lee, Chem. Phys. Lett., 355, 53 (2002) https://doi.org/10.1016/S0009-2614(02)00166-5
  20. J. Chen, S. Z. Deng, J. C. She, N. S. Xu, W. Zhang, X. Wen and S. Yang, J. Appl. Phys., 93, 1774 (2003) https://doi.org/10.1063/1.1536739
  21. C. T. Hsieh, J. M. Chen, H. H. Lin and H. C. Shih, Appl. Phye. Lett., 83, 3383 (2003) https://doi.org/10.1063/1.1619229

Cited by

  1. Two-Dimensional Arrays of Gold Nanoparticles for Plasmonic Nanosensor vol.21, pp.10, 2011, https://doi.org/10.3740/MRSK.2011.21.10.525