DOI QR코드

DOI QR Code

Effect of an AI underlayer on the Growth of Carbon Nanotubes and Their Field Emission Characteristics

알루미늄 하부층이 탄소나노튜브의 성장 및 전계방출 특성에 미치는 영향

  • 이승환 (세종대학교 나노신소재공학부) ;
  • 곽정춘 (세종대학교 나노신소재공학부) ;
  • 이한성 (세종대학교 나노신소재공학부) ;
  • 이내성 (세종대학교 나노신소재공학부)
  • Published : 2008.02.01

Abstract

We studied the effect of an Al underlayer on the growth of carbon nanotubes (CNTs) and their field emission characteristics, First of all, CNTs were grown on the Invar catalyst layers with different thickness of 1 to 10 nm, showing that the CNT length was saturated for the catalyst 5 nm or thicker. The CNTs grown on the 5-nm-thick catalyst were ${\sim}10{\mu}m$ long and ${\sim}30nm$ in diameter. Second, an Al underlayer was applied between the catalyst layer and the Ti diffusion barrier to reduce the diameters of CNTs for better field emission properties by forming spherical Al oxide particles on which smaller catalyst nanoparticles would occur. The optimal thickness of an Al underlayer underneath the 5-nm-thick catalyst was ${\sim}15nm$, producing the CNTs with the length of ${\sim}15{\mu}m$ and the diameter of ${\sim}15nm$. The field emission measurements, following the tape activation, showed that the thinner and longer CNTs gave rise to better field emission performance with the lower turn-on and threshold electric fields.

Keywords

References

  1. M. Terrones, 'Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes', Annu. Rev. Mater. Res., Vol. 33, p. 419, 2003 https://doi.org/10.1146/annurev.matsci.33.012802.100255
  2. N. S. Xu and S. E. Huq, 'Novel cold cathode materials and applications', Mater. Sci. and Eng. R., Vol. 48, p. 47, 2005 https://doi.org/10.1016/j.mser.2004.12.001
  3. S. C. Lim, K. Lee, I. H. Lee, and Y. H. Lee, 'Field emission and applications of carbon nanotubes', Nano, Vol. 2, p. 69, 2007 https://doi.org/10.1142/S1793292007000465
  4. J. H. Choi, A. R. Zoulkarneev, Y.-J. Park, D. S. Chung, B. K. Song, H. S. Kang, C. W. Baik, I. T. Han, H. J. Kim, M. J. Shin, H. J. Kim, T. S. Oh, Y. W. Jin, J. M. Kim, and N. Lee, 'Optimization of electron beam focusing for gated carbon nanotube field emitter arrays', IEEE Trans. Elec. Dev., Vol 52, No. 12, p. 2584, 2005 https://doi.org/10.1109/TED.2005.859595
  5. S. Lee and D. Y. Jeon, 'Effect of degassed elements on the degradation behavior of carbon nanotube cathodes in sealed field emission-backlight units', Appl. Phys. Lett., Vol. 88, p. 063502, 2006 https://doi.org/10.1063/1.2167791
  6. G. Z. Yue, Q. Qiu, B. Gao, Y. Cheng, J. Zhang, H. Shimoda, S. Chang, J. P. Lu, and O. Zhou, 'Generation of continuous and pulsed diagnostic imaging x-ray radiation using a carbon-nanotube-based field-emission cathode', Appl. Phys. Lett., Vol. 81, No. 2, p. 355, 2002 https://doi.org/10.1063/1.1492305
  7. C. Bower, W. Zhu, D. Shalom, D. Lopez, L. H. Chen, and P. L. Gammel, 'On-chip vacuum microtriode using carbon nanotube field emitters', Appl. Phys. Lett., Vol. 80, No. 20, p. 3820, 2002 https://doi.org/10.1063/1.1480884
  8. D. S. Chung, S. H. Park, H. W. Lee, J. H. Choi, S. N. Cha, J. W. Kim, J. E. Jang, K. W. Min, S. H. Choi, M. J. Moon, L. S. Lee, C. K. Lee, J. H. Yoo, J. M. Kim, J. E. Jung, Y. W. Jin, Y. J. Park, and J. B. You, 'Carbon nanotube electron emitters with a gated structure using backside exposure processes', Appl. Phys. Lett., Vol. 80, No. 21, p. 4045, 2002 https://doi.org/10.1063/1.1480104
  9. I. T. Han, H. J. Kim, Y. J. Park, N. S. Lee, J. E. Jang, J. W. Kim, J. E. Jung, and J. M. Kim, 'Fabrication and characterization of gated field emitter arrays with self-aligned carbon nanotubes grown by chemical vapor deposition', Appl. Phys. Lett., Vol. 81, No. 11, p. 2070, 2002 https://doi.org/10.1063/1.1506408
  10. J. H. Lee, S. H. Lee, W. S. Kim, H. J. Lee, J. N. Heo, T. W. Jeong, C. W. Baik, S. H. Park, S. G. Yu, J. B. Park, Y. W. Jin, J. M. Kim, H. J. Lee, J. W. Moon, M. A. Yoo, J. W. Nam, S. H. Cho, J. S. Ha, T. I. Yoon, J. H. Park, and D. H. Choe, 'Current degradation mechanism of single wall carbon nanotube emitters during field emission', Appl. Phys. Lett., Vol. 89, p. 253155, 2006
  11. J. Wang, X. Zhang, W. Lei, M. Xiao, Y. Cui, Y. Di, and F. Mao, 'Residual gas analysis based on carbon nanotube field emission display', J. Vac. Sci. Technol. B., Vol. 25, No. 2, p. 615, 2007 https://doi.org/10.1116/1.2715970
  12. R. Y. Zhang, I. Amlani, J. Baker, J. Tresek, R. K. Tsui, and P. Fejes, 'Chemical vapor deposition of single-walled carbon nanotubes using ultrathin Ni/Al film as catalyst', Nano Lett., Vol. 3, No. 6, p. 731, 2003 https://doi.org/10.1021/nl034154z
  13. I. T. Han, B. K. Kim, H. J. Kim, M. Yang, Y. W. Jin, S. J. Jung, N. S. Lee, S. K. Kim, and J. M. Kim, 'Effect of Al and catalyst thickness on the growth of carbon nanotubes and application to gated field emitter arrays', Chem. Phys. Lett., Vol. 400, p. 139, 2004 https://doi.org/10.1016/j.cplett.2004.10.123
  14. Y. Song and J. Choi, 'Simultaneous carbon nanotube root and stem growth from a single buried catalyst layer', Appl. Phys. Lett., Vol. 88, p. 173108, 2006 https://doi.org/10.1063/1.2198485
  15. M. A. Guillorn, X. Yang, A. V. Melechko, D. K. Hensley, M. D. Hale, V. I. Merkulov, M. L. Simpson, L. R. Baylor, W. L. Gardner, D. H. Lowndes, and D. H. Lowndes, 'Vertically aligned carbon nanofiber-based field emission electron sources with an integrated focusing electrode', J. Vac. Sci. Technol. B, Vol. 22, No. 1, p. 35, 2004 https://doi.org/10.1116/1.1633768
  16. R. H. Fowler and L. W. Nordheim, 'Electron emission in intense electric fields', Proc. R. Soc. Lond. Ser. A, Vol. 119, No. 781, p. 173, 1928 https://doi.org/10.1098/rspa.1928.0091
  17. 공병윤, 석사학위 졸업논문, '열화학기상증착법 으로 성장된 다중벽 탄소나노튜브의 밀도제어 에 의한 전계방출 특성향상', 세종대학교, 2005
  18. M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, 'Raman spectroscopy of carbon nanotubes', Phys. Rep., Vol. 409, No. 2, p. 47, 2005 https://doi.org/10.1016/j.physrep.2004.10.006
  19. J. H. Choi, S. H. Choi, J. H. Han, J. B. Yoo, C. Y. Park, T. W. Jung, S. G. Yu, I. T. Han, and J. M. Kim, 'Enhanced electron emission from carbon nanotubes through density control using in-situ plasma treatment of catalyst metal', J. Appl. Phys., Vol. 94, p. 487, 2003 https://doi.org/10.1063/1.1581377
  20. W. K. Wong, C. S. Lee, and S. T. Lee., 'Uniform-diameter, aligned carbon nanotubes from microwave plasma-enhanced chemicalvapor deposition', J. Appl. Phys., Vol. 97, p.084307, 2005 https://doi.org/10.1063/1.1871354
  21. L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J-M. Bonard, and K. Kern, 'Scanning field emission from patterned carbon nanotube films', Appl. Phys. Lett., Vol. 76, No. 15, p. 2071, 2000 https://doi.org/10.1063/1.126258
  22. B. Y. Kong, J. Y. Seon, S. H. Lee, S. J. Jung, N. S. Lee, T. W. Jeong, J. N. Heo, I. T. Han, and J. M. Kim, 'Density control of hi ghly populated carbon nanotubes grown by thermal chemical vapor deposition to improve their field emission characteristics', J. Korean Phys. Soc., Vol. 45, No. 6, p. 1580, 2004
  23. S. H. Jo, Y. Tu, Z. P. Huang, D. L. Carnahan, J. Y. Huang, D. Z. Wang, and Z. F. Ren, 'Correlation of field emission and surface microstructure of vertically aligned carbon nanotubes', Appl. Phys Lett., Vol. 84, No. 3, p. 413, 2004 https://doi.org/10.1063/1.1642272