Browse > Article
http://dx.doi.org/10.3740/MRSK.2006.16.7.408

Field Emission from Selectively-patterned ZnO Nanorods Synthesized by Solution Chemistry Route  

Kim, Do-Hyung (Department of Physics, Kyungpook National University)
Publication Information
Korean Journal of Materials Research / v.16, no.7, 2006 , pp. 408-411 More about this Journal
Abstract
An effective wet-chemical approach is demonstrated for growing large-area, selectively-patterned, and low-temperature-synthesized ZnO nanorods (ZNRs). The growth of ZNRs was enhanced on a Co layer. The selectivity and density were readily controlled by the control of the temperature when the substrate transfers into aqueous solution. The cross-sectional transmission electron microscopy image shows that single crystalline ZNRs grown along [0001] have good adhesion at interface between ZNRs/substrate. The turn-on field was 4 $V/{\mu}m$ at the emission current density of 1 ${\mu}A/cm^2$. The stable emission was obtained at 0.11 $mA/cm^2$ under 7.2 $V/{\mu}m$ over 10 hr. These results suggest that selectively-patterned ZNRs have the potential for use as field emitters in large-area field emission displays.
Keywords
zinc oxode; nanorod; field emission; selective patterning;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. H. Jo, J. Y Lao, Z. F. Ren, R. A. Farrer, T. Baldacchini and J. T. Fourkas, Appl. Phys Lett., 394, 4821 (2003)   DOI   ScienceOn
2 L. Vayssieres, Adv. Mat., 15, 464 (2003)   DOI   ScienceOn
3 R. H. Fowler and L. Nordheim, Proc. R. Soc, London Ser., A 119, 173 (1928)   DOI
4 S. Yamabi and H. J. Imai, Mater, Chem., 12, 3773 (2002)   DOI   ScienceOn
5 H. Kind, H. Yan, B. Messer, M. Law and P. Yang, Adv Mater., 14, 158 (2002)   DOI   ScienceOn
6 L. Guo, S. H. Yang, C. L. Yang, J. N. Wang and W. K. Ge, Chem. Mater., 12, 2268 (2000)   DOI   ScienceOn
7 M. H. Huang, S, Mao H. Feick, H. Yan, W Wu, H. Kind, E, Weber, R, Russo and P. Yang, Science, 292, 1897 (2001)   DOI   ScienceOn
8 B. Liu and C. J. Zeng, J. Am. Chem. Soc., 125, 4430 (2003)   DOI   ScienceOn
9 W. I. Park, J. Y. Yoo and G.-C. Yi, J. Korean Phys, Soc., 46, L1067 (2005)
10 W X. Wang, C. J. Summers and Z. L. Wang, Nano Lett., 4, 423 (2004)   DOI   ScienceOn
11 C. T. Hsieh, J. M. Chen, H. H. Lin and H. C. Shih, Appl. Phye. Lett., 83, 3383 (2003)   DOI   ScienceOn
12 M. H. Zhao, Z. L.Wang and S. Mao, Nano Lett., 4, 587 (2004)   DOI   ScienceOn
13 J. Chen, S. Z. Deng, J. C. She, N. S. Xu, W. Zhang, X. Wen and S. Yang, J. Appl. Phys., 93, 1774 (2003)   DOI   ScienceOn
14 D. -H. Kim, H. -R. Lee, M. -W. Lee, J. -H. Lee, Y. -H. Song, J. -G. Jee and S. - Y. Lee, Chem. Phys. Lett., 355, 53 (2002)   DOI   ScienceOn
15 J. M. Bonard, F. Maier, T. Stocjli, A. Chatelain, W.A. de Heer, J. M. Salvetat and L. Forro, Ultramicroscopy, 73, 7 (1998)   DOI   ScienceOn
16 Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, Appl. Phys. Lett., 84, 3654 (2004)   DOI   ScienceOn
17 K. Keis, E. Magnusson, H. Lindstorrn, S. E. Lindquist and A. Hagfeldt, Sol. Energy Mater., 73, 51 (2002)   DOI   ScienceOn
18 P. G. Collinse and A. Zettl, Phys. Rev., B79, 2811 (1997)   DOI   ScienceOn
19 D.-H. Kim and H. R. Lee, J. Korean Phys. Soc., 45, L803 (2004)
20 C. J. Lee, T. J. Lee, S, C. Lyu, Y. Zhang, H. Ruh and H. J. Lee, Appl. Phys. Lett., 81, 3648 (2002)   DOI   ScienceOn
21 X. Bai, E. G Wang, P. Gao and Z. L. Wang, Nano Lett., 3, 1147 (2003)   DOI   ScienceOn