• Title/Summary/Keyword: field annealing

Search Result 656, Processing Time 0.038 seconds

Effect of Nano Buffer Layer on Property and Growth of Carbon Thin Film (탄소계 박막의 성장과 특성에 대한 나노 Buffer Layer의 영향)

  • ;Takashi lkuno;Kenjirou Oura
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.53-59
    • /
    • 2003
  • Using Platinum-silicide (PtSi) formed between silicon substrate and carbon film, we have improved the field emission of electrons from carbon films. Pt films were deposited on n-Si(100) substrates at room temperature by DC sputter technique. After deposition, these PtSi thin films were annealed at 400 ~ $600^{\circ}C$ in a vacuum chamber, and the carbon films were deposited on those Pt/Si substrates by laser ablation at room temperature. The field emission property of C/Pt/Si system is found to be better than that of C/Si system and it is showed that property was improved with increasing annealing temperature. The reasons why the field emission from carbon film was improved can be considered as follows, (1)the resistance of carbon films was decreased due to graphitization, (2)electric field concentration effectively occurred because the surface morphology of carbon film deposited on Pt/si substrates with rough surface, (3)it is showed that annealing induced reaction between Pt film and Si substrate, as a consequence that the interfacial resistance between Pt film and Si substrate was decreased.

The Effect of Magnetic Field Annealing on the Structual and Electromagnetic Properties of $Ni_{81}Fe_{19}$ thin Films for Magnetoresistaknce Heads (자기저항헤드용 $Ni_{81}Fe_{19}$ 박막의 구조 및 전자기적 특성에 미치는 자장중 열처리의 영향)

  • 김용성;이경섭;서수정;박현순;김기출;송용진
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.4
    • /
    • pp.242-250
    • /
    • 1996
  • The effects of annealing in magnetic field after deposition on electromagnetic properties of $Ni_{81}Fe_{19}$ thin($400\;{\AA}$) films prepared by RF-magnetron sputtering were investigated in terms of microstructure and surface morphology. The coercivity of the films was decreased below $300^{\circ}C$ due to stress relief and recrystallization, while increased at $400^{\circ}C$ due to grain growth and increasing the surface roughness. And then, $4{\pi}M_{s}$, was almost independent of annealing temperatures. Increasing the annealing temperature. the electrical resistivity of films was decreased from $37\;{\mu}{\Omega}cm$ to $24\;{\mu}{\Omega}cm$, the magnetoresistance was nearly a constant of about $0.6\;{\mu}{\Omega}cm$, and the MR ratio was increased from 1.5 % to 3.1 %. Therefore, It was shown that increasing the magnetoresistive ratio was mainly affected by decreasing the electrical resistivity. Considering the practical application of the films for magnetoresistive heads, optimal annealing conditions was obtained after one hour annealing at $300^{\circ}C$ in 400 Oe unidirectional magnetic field.

  • PDF

Comparison of in-situ $MgB_2$ Superconducting Properties Under Different Annealing Environment (열처리조건 변화에 따른 in-situ $MgB_2$ 초전도 특성 비교)

  • Chung, K.C.;Sinha, B. B.;Chang, S.H.;Kim, J.H.;Dou, S. X.
    • Progress in Superconductivity
    • /
    • v.14 no.2
    • /
    • pp.116-121
    • /
    • 2012
  • Effect of mixed gas and additional Mg powder in an annealing process of the $MgB_2$ is investigated. Four different type of samples were prepared, each in different annealing environment of Ar, $Ar+4%H_2$, Ar with Mg powder and $Ar+4%H_2$ with Mg powder. Different annealing environment did not affect the electron-phonon interaction which is reflected from the same superconducting transition of 36.6 K for all samples. The reducing effect of hydrogen is clearly depicted from the presence of excess Mg in sample synthesized in $Ar+4%H_2$ gas implying the reduced rate of reaction between Mg and B. This has manifested itself in terms of slightly increased high-field critical current density of the sample. In contrast, the sample synthesized in $Ar+4%H_2$ with Mg powder, has shown overall enhancement in the superconducting properties as presented by higher diamagnetic saturation and critical current density.

Solvent Vapor Annealing Effects in Contact Resistances of Zone-cast Benzothienobenzothiophene (C8-BTBT) Transistors

  • Kim, Chaewon;Jo, Anjae;Kim, Heeju;Kim, Miso;Lee, Jaegab;Lee, Mi Jung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.411-416
    • /
    • 2016
  • Benzothienobenzothiophene ($C_8-BTBT$) is a soluble organic small molecule material with high crystallinity resulting from its strong self-organizing properties. In addition, the high mobility and easy fabrication of $C_8-BTBT$ make it very attractive in terms of organic thin-film transistors. In this work, we made $C_8-BTBT$ thin films by using the zone-casting method; we also used an organic solvent to treat the devices with solvent vapor annealing to improve the electrical properties. As a result, we confirmed improved mobility, threshold voltage, and subthreshold swing after solvent vapor annealing. To prove the effect of solvent vapor annealing, we used the simultaneous extraction model to extract the contact resistance from the current-voltage curve. We confirmed that the electrical properties improved with decreasing contact resistance.

The post annealing effect on the properties of AZO films (AZO 박막의 후 열처리에 따른 특성변화)

  • Ko, Ki-Han;Seo, Jae-Keun;Kim, Jae-Kwang;Cho, Hyung-Jun;Hong, Byung-You;Choi, Won-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.457-458
    • /
    • 2009
  • In this work, transparent conducting Al-doped zinc oxide (AZO) films were prepared on Coming glass substrate by RF magnetron sputtering using an Al-doped ZnO target (Al: 2 wt.%) at room temperature and all films were deposited with athickness of 150 nm. We investigated the effects of the post-annealing temperature and the annealing ambient on structural, electrical and optical properties of AZO films. The films were annealed at temperatures ranging from 300 to $500^{\circ}C$ in steps of $100^{\circ}C$ using rapid thermal annealing equipment in oxygen. The thickness of the film was observed by field emission scanning electron microscopy (FE-SEM) and grain size was calculated from the XRD spectra using the Scherrer equation and their electrical properties were investigated using a hole measurement and the reflectance of AZO films was investigated by UV-VIS spectrometry.

  • PDF

Influence of Heat Treatment on the Structural, Electrical and Optical Properties of Aluminum-Doped Zinc Oxide Thin Films Prepared by Magnetron Sputtering

  • Jung, Sung Hee;Kong, Seon Mi;Chung, Chee Won
    • Current Photovoltaic Research
    • /
    • v.1 no.2
    • /
    • pp.97-102
    • /
    • 2013
  • Aluminum-doped zinc oxide (AZO) thin films were prepared by dc magnetron sputtering at room temperature and the effect of heat treatment on the structural, electrical and optical properties of the films were examined. As the annealing temperature and time increased, the resistivity decreased and the transmittance improved. All AZO films had c-axis oriented (002) plane of ZnO, regardless of the annealing process employed. As the annealing temperature and time increased, the crystallinity of AZO thin films increased due to the formation of a new ZnO phase in which Al was substituted for Zn. However, at the high annealing temperature of $400^{\circ}C$, the resistivity of the films increased via separation of Zn and Al from ZnO phase due to their low melting points. X-ray diffraction, field emission scanning electron micrograph and Hall effect measurement confirmed the formation of uniformly distributed new grains of ZnO substituted with Al. The variation of Al contents in AZO films was shown to be the primary factor for the changes in resistivity and carrier concentration of the films.

Structural Variation of Diamond-like Carbon Thin Film According to the Annealing Temperature (열처리온도에 따른 다이아몬드상 카본박막의 구조적 특성변화)

  • Choi Won-Seok;Park Mun-Gi;Hong Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.701-706
    • /
    • 2006
  • In addition to its similarity to genuine diamond film, diamond-like carbon (DLC) film has many advantages, including its wide band gap and variable refractive index. In this study, DLC films were prepared by the RF PECVD (Plasma Enhanced Chemical Vapor Deposition) method on silicon substrates using methane $(CH_4)$ and hydrogen $(H_2)$ gas. We examined the effects of the post annealing temperature on the structural variation of the DLC films. The films were annealed at temperatures ranging from 300 to $900^{\circ}C$ in steps of $200^{\circ}C$ using RTA equipment in nitrogen ambient. The thickness of the film and interface between film and substrate were observed by surface profiler, field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), respectively. Raman and X-ray photoelectron spectroscopy (XPS) analysis showed that DLC films were graphitized ($I_D/I_G$, G-peak position and $sp^2/sp^3$ increased) ratio at higher annealing temperature. The variation of surface as a function of annealing treatment was verified by a AFM and contact angle method.

Study on Solution Processed Indium Zinc Oxide TFTs Using by Femtosecond Laser Annealing Technology (펨토초 레이저 어닐링 기술을 이용한 용액 공정 기반의 비정질 인듐 징크 산화물 트랜지스터에 관한 연구)

  • Kim, Han-Sang;Kim, Sung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.1
    • /
    • pp.50-54
    • /
    • 2018
  • In this study, a femtosecond laser pre-annealing technology based on indium zinc oxide (IZO) thin-film transistors (TFTs) was investigated. We demonstrated a stable pre-annealing process to analyze the change in the surface structures of thin-films, and we improved the electrical performance. Furthermore, static and dynamic electrical characteristics of IZO TFTs with n-channel inverters were observed. To investigate the static and dynamic responses of our solution-processed IZO TFTs, simple resistor-load-type inverters were fabricated by connecting a $1-M{\Omega}$ resistor. The femtosecond laser pre-annealing process based on IZO TFTs showed good performance: a field-effect mobility of $3.75cm_2/Vs$, an $I_{on}/I_{off}$ ratio of $1.8{\times}10^5$, a threshold voltage of 1.13 V, and a subthreshold swing of 1.21 V/dec. Our IZO-TFT-based N-MOS inverter performed well at operating voltage, and therefore, is a good candidate for advanced logic circuits and display backplane.

Annealing Effects of Laser Ablated PZT Films

  • Rhie, Dong-Hee;Jung, Jin-Hwee;Cho, Bong-Hee;Ryutaro Maeda
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.528-531
    • /
    • 2000
  • Deposition of PZT with UV laser ablatio was applied for realization of thin film sensors and actuators. Deposition rate of more than 20nm/min was attained by pulsed KrF excimer laser deposition, which is fairly better than those obtained by the other methods. Perovskite phase was obtained at room temperature deposition with Fast Atom Beam(FAB) treatment and annealing. Smart MEMS(Micro electro-mechanical system) is now a suject of interest in the field of micro optical devices, micro pumps, AFM cantilever devices etc. It can be fabricated by deposition of PZT thin films and micromachining. PZT films of more than 1 micron thickness is difficult to obtain by conventional methods. This is the reason why we applied excimer laser ablation for thin film deposition. The remanent polarization Pr of 700nm PZT thin film was measured, and the relative dielectric constant was determined to about 900 and the dielectric loss tangent was also measured to be about 0.04. XRD analysis shows that, after annealing at 650 degrees C in 1 hour, the perovskite structure would be formed with some amount of pyrochlore phase, as is the case of the annealing at 750 degrees C in 1 hour.

  • PDF

Application of Modified Rapid Thermal Annealing to Doped Polycrystalline Si Thin Films Towards Low Temperature Si Transistors

  • So, Byung-Soo;Kim, Hyeong-June;Kim, Young-Hwan;Hwang, Jin-Ha
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.552-556
    • /
    • 2008
  • Modified thermal annealing was applied to the activation of the polycrystalline silicon films doped as p-type through implantation of $B_2H_6$. The statistical design of experiments was successfully employed to investigate the effect of rapid thermal annealing on activation of polycrystalline Si doped as p-type. In this design, the input variables are furnace temperature, power of halogen lamps, and alternating magnetic field. The degree of ion activation was evaluated as a function of processing variables, using Hall effect measurements and Raman spectroscopy. The main effects were estimated to be furnace temperature and RTA power in increasing conductivity, explained by recrystallization of doped ions and change of an amorphous Si into a crystalline Si lattice. The ion activation using rapid thermal annealing is proven to be a highly efficient process in low temperature polycrystalline Si technology.