DOI QR코드

DOI QR Code

Application of Modified Rapid Thermal Annealing to Doped Polycrystalline Si Thin Films Towards Low Temperature Si Transistors

  • So, Byung-Soo (Department of Materials Science & Engineering, Hongik University) ;
  • Kim, Hyeong-June (Department of Materials Science & Engineering, Hongik University) ;
  • Kim, Young-Hwan (Department of Materials Science & Engineering, Hongik University) ;
  • Hwang, Jin-Ha (Department of Materials Science & Engineering, Hongik University)
  • Published : 2008.10.27

Abstract

Modified thermal annealing was applied to the activation of the polycrystalline silicon films doped as p-type through implantation of $B_2H_6$. The statistical design of experiments was successfully employed to investigate the effect of rapid thermal annealing on activation of polycrystalline Si doped as p-type. In this design, the input variables are furnace temperature, power of halogen lamps, and alternating magnetic field. The degree of ion activation was evaluated as a function of processing variables, using Hall effect measurements and Raman spectroscopy. The main effects were estimated to be furnace temperature and RTA power in increasing conductivity, explained by recrystallization of doped ions and change of an amorphous Si into a crystalline Si lattice. The ion activation using rapid thermal annealing is proven to be a highly efficient process in low temperature polycrystalline Si technology.

Keywords

References

  1. D. Y. He, X. Q.Wang, Q. Chen and J. S. Li, J. Korean Phys. Soc., 46, S88 (2005)
  2. N. Komiya, R. Nishikawa, M. Okuyama, T. Yamada, Y. Saito, S. Oima, K. Yoneda, H. Kanno, H. Takahashi, G. Rajeswaran, M. Itoh, M. Boroson and T. K. Hatear, Proceeding of the 10th International Workshop on Inorganic and Organic Electroluminescence, 347 (2000)
  3. K. Sera, F. Okumura, H. Uchida, S. Itoh, s. Karelso and K. Hota, IEEE Trans. Electron Device, 36(12), 2868 (1999) https://doi.org/10.1109/16.40970
  4. M. A. Crowder, P. G. Garey, P. M. Smith, R. S. Sposili, H. S. Cho and J. S. Im, IEEE Electron Device Lett., 19(8), 306 (1998) https://doi.org/10.1109/55.704408
  5. M. Yamamoto, H. Nishitani, M. Sakai, M. Gotoh, Y. Taketomi, T. Tautsu and M. Nishitani, Euro Display 99 Proceedings, 53 (1999)
  6. K. H. Kang, S. J. Lee, B. C. Song, M. S. Bang, S. E. Nam and H. J. Kim, J. Korean Phys. Soc., 44(6), 1552 (2004)
  7. E. Ibok and S. J. Garg, Electrochem. Soc., 140, 2927 (1993) https://doi.org/10.1149/1.2220934
  8. S. W. Lee and S. K. Joo, IEEE Electron Device Lett., 17, 160 (1997)
  9. S. Y. Lee, Y. C. Jeon and S. K. Joo, Appl. Phys. Lett., 66(13), 1671 (1995) https://doi.org/10.1063/1.113888
  10. J. S. Im and R. S. Sposili, Mat. Res. Bull., 2(3), 1671 (1995)
  11. J. B. Lee, C. J. Lee and D. K. Choi, Jpn. J. Appl. Phys., 40, 6177 (2001) https://doi.org/10.1143/JJAP.40.6177
  12. A. R. Song, M.S. Thesis, Hongik University (2000)
  13. R. Kakkad, J. Smith, W. S. Lau, S. J. Fonash and R. Kerns, J. Appl. Phys., 65, 2069 (1989) https://doi.org/10.1063/1.342851
  14. K. C. Park, I. H. Song, S. H. Jung, J. W. Park and M. K. Han, AM-LCD 2000, 147 (2000)
  15. S. J. Lee, B. C. Song, S. H. Kim, S. K. Lee, M. S. Bang and S. E. Nam, J. Korean Phys. Soc., 47(2), 339, (2005)
  16. A. Gat, L. Gerzberg, J. F. Gibbons, T. J. Magee, J. Peng and J. D. Hong, Appl. Phys. Lett., 33(9), 775 (1978) https://doi.org/10.1063/1.90501
  17. Y. Kawasaki, T. Murakami, T. Kuroi, Y. Ohno and Y. Matsui, Mat. Chem. and Phys., 54, 17 (1998) https://doi.org/10.1016/S0254-0584(98)00012-1
  18. D. C. Montgomery and G. C. Runger, Applied statistics and probability for engineers, John Wiley & Sons Inc, 505 (2002)