Browse > Article
http://dx.doi.org/10.4313/JKEM.2018.31.1.50

Study on Solution Processed Indium Zinc Oxide TFTs Using by Femtosecond Laser Annealing Technology  

Kim, Han-Sang (College of Electrical and Computer Engineering, Chungbuk National University)
Kim, Sung-Jin (College of Electrical and Computer Engineering, Chungbuk National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.31, no.1, 2018 , pp. 50-54 More about this Journal
Abstract
In this study, a femtosecond laser pre-annealing technology based on indium zinc oxide (IZO) thin-film transistors (TFTs) was investigated. We demonstrated a stable pre-annealing process to analyze the change in the surface structures of thin-films, and we improved the electrical performance. Furthermore, static and dynamic electrical characteristics of IZO TFTs with n-channel inverters were observed. To investigate the static and dynamic responses of our solution-processed IZO TFTs, simple resistor-load-type inverters were fabricated by connecting a $1-M{\Omega}$ resistor. The femtosecond laser pre-annealing process based on IZO TFTs showed good performance: a field-effect mobility of $3.75cm_2/Vs$, an $I_{on}/I_{off}$ ratio of $1.8{\times}10^5$, a threshold voltage of 1.13 V, and a subthreshold swing of 1.21 V/dec. Our IZO-TFT-based N-MOS inverter performed well at operating voltage, and therefore, is a good candidate for advanced logic circuits and display backplane.
Keywords
IZO TFT; Femtosecond laser annealing; Solution processed;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. B. Jackson, R. L. Hoffman, and G. S. Herman, Appl. Phys. Lett., 87, 193503 (2005). [DOI: https://doi.org/10.1063/1.2120895]   DOI
2 P. K. Nayak, M. N. Hedhili, D. Cha, and H. N. Alshareef, Appl. Phys. Lett., 100, 202106 (2012). [DOI: https://doi.org/10.1063/1.4718022]   DOI
3 K. Nomura, T. Kamiya, H. Ohta, K. Ueda, M. Hirano, and H. Hosono, Appl. Phys. Lett., 85, 1993 (2004). [DOI: https://doi.org/10.1063/1.1788897]   DOI
4 J. S. Kim, B. S. Oh, M. Piao, M. K. Joo, H. K. Jang, S. E. Ahn, and G. T. Kim, J. Appl. Phys., 116, 245302 (2015). [DOI: https://doi.org/10.1063/1.4904843]
5 P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, J. Non-Cryst. Solids, 352, 1749 (2006). [DOI: https://doi.org/10.1016/j.jnoncrysol.2006.01.067]   DOI
6 K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature, 432, 488 (2004). [DOI: https://doi.org/10.1038/nature03090]   DOI
7 F. Jaehnike, D. V. Pham, R. Anselmann, C. Bock, and U. Kunze, ACS Appl. Mat. Interfaces, 7, 14011 (2015). [DOI: https://doi.org/10.1021/acsami.5b03105]   DOI
8 E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater., 24, 2945 (2012). [DOI: https://doi.org/10.1002/adma.2011 03228]   DOI
9 E.M.C. Fortunato, P.M.C. Barquinha, A.C.M.B.G. Pimentel, A.M.F. Goncalves, A.J.S. Marques, L.M.N. Pereira, and R.F.P. Martins, Adv. Mater., 17, 590 (2005). [DOI: https://doi.org/10.1002/adma.200400368]   DOI
10 Y. Sun and J. A. Rogers, Adv. Mater., 19, 1897 (2007). [DOI: https://doi.org/10.1002/adma.200602223]   DOI
11 H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett., 86, 013503 (2005). [DOI: https://doi.org/10.1063/1.1843286]   DOI
12 B. Zhang, H. Li, X. Zhang, Y. Luo, Q. Wang, and A. Song, Appl. Phys. Lett., 106, 093506 (2015). [DOI: https://doi.org/10.1063/1.4914296]   DOI
13 W. H. Jeong, J. H. Bae, and H. J. Kim, IEEE Electron Device Lett., 33, 68 (2012). [DOI: https://doi.org/10.1109/LED.2011.2173897]   DOI
14 C. G. Choi, S. J. Seo, and B. S. Bae, Electrochem. Solid-State Lett., 11, H7 (2008). [DOI: https://doi.org/10.1149/1.2800562]   DOI
15 S. J. Seo, Y. H. Hwang, and B. S. Bae, Electrochem. Solid-State Lett., 13, H357 (2010). [DOI: https://doi.org/10.1149/1.3474606]   DOI
16 S. Y. Liu, T. Chen, J. Wan, G. P. Ru, B. Z. Li, and X. P. Qu, Appl. Phys. A, 94, 775 (2009). [DOI: https://doi.org/10.1007/s00339-008-4957-5]   DOI
17 T. Arguirov, T. Mchedlidze, M. Kittler, R. Rolver, B. Berghoff, M. Forst, and B. Spangenberg, Appl. Phys. Lett., 89, 053111 (2006). [DOI: https://doi.org/10.1063/1.2260825]   DOI
18 C. Avis and J. Jang, Electrochem. Solid-State Lett., 14, J9 (2011). [DOI: https://doi.org/10.1149/1.3516608]   DOI
19 A. Chimmalgi, T. Y. Choi, C. P. Grigoropoulos, and K. Komvopoulos, Appl. Phys. Lett., 82, 1146 (2003). [DOI: https://doi.org/10.1063/1.1555693]   DOI
20 J. H. Na, M. Kitamura, and Y. Arakawa, Appl. Phys. Lett., 93, 063501 (2008). [DOI: https://doi.org/10.1063/1.2969780]   DOI
21 G. H. Gelinck, H.E.A. Huiteman, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H. van der Putten, T.C.T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B.J.E. van Rens, and D. M. de Leeuw, Nat. Mater., 3, 106 (2004). [DOI: https://doi.org/10.1038/nmat1061]   DOI
22 H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature, 445, 745 (2007). [DOI: https://doi.org/10.1038/nature05533]   DOI
23 Y. C. Wang, H. Ahn, C. H. Chuang, Y. P. Ku, and C. L. Pan, Appl. Phys. B, 97, 181 (2009). [DOI: https://doi.org/10.1007/s00340-009-3580-2]   DOI