Browse > Article

Comparison of in-situ $MgB_2$ Superconducting Properties Under Different Annealing Environment  

Chung, K.C. (Korea Institute of Materials Science)
Sinha, B. B. (Korea Institute of Materials Science)
Chang, S.H. (Korea Institute of Materials Science)
Kim, J.H. (Institute for Superconducting and Electronic Materials, Univ. of Wollongong)
Dou, S. X. (Institute for Superconducting and Electronic Materials, Univ. of Wollongong)
Publication Information
Abstract
Effect of mixed gas and additional Mg powder in an annealing process of the $MgB_2$ is investigated. Four different type of samples were prepared, each in different annealing environment of Ar, $Ar+4%H_2$, Ar with Mg powder and $Ar+4%H_2$ with Mg powder. Different annealing environment did not affect the electron-phonon interaction which is reflected from the same superconducting transition of 36.6 K for all samples. The reducing effect of hydrogen is clearly depicted from the presence of excess Mg in sample synthesized in $Ar+4%H_2$ gas implying the reduced rate of reaction between Mg and B. This has manifested itself in terms of slightly increased high-field critical current density of the sample. In contrast, the sample synthesized in $Ar+4%H_2$ with Mg powder, has shown overall enhancement in the superconducting properties as presented by higher diamagnetic saturation and critical current density.
Keywords
$MgB_2$; annealing; critical current density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.K. Finnemore, J.E. Ostenson, S.L. Bud'ko, G. Lapertot and P.C. Canfield, Phys. Rev. Let. 86 (2001) 2420.   DOI   ScienceOn
2 P.C. Canfield, D.K. Finnemore, S.L. Bud'ko, J.E. Ostenson, G. Lapertot, C. E. Cunningham and C. Petrovic, Phys. Rev. Lett. 86 (2001) 2423.   DOI   ScienceOn
3 K. Vinod, R.G. Abhilash Kumar and U. Syamaprasad, Supercond. Sci. Technol. 20 (2007) R1-R3.   DOI   ScienceOn
4 K.H.P. Kim, J.H. Choi, C.U. Jung, P. Chowdhury, H.S. Lee, M.S. Park, H.J. Kim, J.Y. Kim, Z. Du, E.M. Choi, M.S. Kim, W.N. Kang, S.I. Lee, G.Y. Sung and J.Y. Lee, Phys. Rev. B, 65 (2002) 100510.   DOI
5 A.K. Pradhan, X.Z. Shi, M. Tokunaga, T. Tamegai, Y. Takano, K. Togano, H. Kito and H. Ihara, Phys. Rev. B 64 (2001) 212509.   DOI
6 A.K. Pradhan, X.Z. Shi, M. Tokunaga, T. Tamegai, Y. Takano, K. Togano, H. Kito and H. Ihara, Phys. Rev. B 65 (2002) 144513.   DOI
7 S. Okuma, S. Togo, and K. Amemori, Phy. Rev. B 67 (2003) 172508.   DOI
8 B.A. Glowacki, M. Majoros, M. Vickers, J.E. Evetts, Y. Shi and I. McDougall, Supercond. Sci. Technol. 14 (2001) 193.   DOI   ScienceOn
9 J. M. Rowell, Supercond. Sci. Technol. 16 (2003) R17.   DOI   ScienceOn
10 P. A. Sharma, N. Hur, Y. Horibe, C. H. Chen, B. G. Kim, S. Guha, Marta Z. Cieplak, and S-W. Cheong, Phys. Rev. Lett. 89 (2002) 167003.   DOI
11 A. Serquis, X. Z. Liao, Y. T. Zhu, J. Y. Coulter, J. Y. Huang, J. O. Willis, D. E. Peterson and F. M. Mueller, N. O. Moreno, J. D. Thompson, V. F. Nesterenko, and S. S. Indrakanti, J. Appl. Phys. 92 (2002) 351.   DOI   ScienceOn
12 C.P. Bean, Phys. Rev. Lett. 8 (1962) 250.   DOI
13 J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).   DOI   ScienceOn
14 S.L. Bud'ko, G. Lapertot, C. Petrovic, C.E. Cunningham, N. Anderson and P.C. Canfield, Phys. Rev. Lett. 86 (2001) 1877.   DOI   ScienceOn