림프절은 체내로 침입한 병원체에 반응하여 성숙한 림프구들이 활성화 되는 곳이다. 림프구들은 스트로마의 구조적 뼈대를 따라 동계항원을 제시하고 있는 항원제시세포의 표면을 탐색한다. Fibroblastic reticular cells(FRC)는 림프절 T zone에서 3차원구조 네트워크를 형성하는데 관여하는 스트로마 세포로 유입되는 T 림프구들에 대한 안내길을 제공한다. 이런 상호 협력적인 환경에서 FRC와 T세포의 양방향적 관계는 림프절의 정상적 기능을 수행하는데 필수적이다. FRC는 물리적으로 림프절 조형물을 형성 할 뿐만 아니라 T세포 생물학적 기능조절에도 필수적이다. FRC는 T 림프구와 상호 반응하며 T세포에 발판을 제공하고 T세포 면역반응에 영향을 미치는 용해성 인자들을 방출한다. 최근에는 FRC는 말초에서 자기 관용 T세포 생성에도 관여하며 림프절에서 활성화된 T세포 분열을 조절하는데도 관여하고 있다. 따라서, FRC와 T세포 상호간 협력은 림프절에서 T세포기능을 조절하는데 중요한 결과를 야기한다. 더욱이, FRC는 염증 상황에서 항생펩타이드, 보체 등의 분비를 통한 선천성 면역에도 중요한 역할도 한다. 결론적으로 FRC와 T세포 상호간에 T세포 생물학적 효능을 증대를 위해 양방향성 접촉을 하며 이러한 상호 협력적 피드백은 면역반응 동안 조직기능 유지를 돕게 된다.
항원은 병원체로부터 유래한 질병인자다. 생명체는 항원에 대항하는 방어계인 면역계를 가지고 있다. 항원은 식세포작용, 항체, 보체 활성화, NK세포 혹은 MHC 분자를 통한 세포독성 T세포와 같은 방법을 통해서 처리된다. 림프절은 스트로마세포와 3차원 네트워크를 통해서 구성되어 있다. Fibroblastic reticular cells (FRC)는 림프절 T zone에서 T세포와 상호작용한다. FRC는 세포외 기질 생산과 homing 케모카인을 생산하여 감염에 대비한다. 하지만, FRC가 항원처리과정에 관련되어있다는 보고는 없다. 본 연구는 FRC의 항원처리 관련성에 대한 연구이다. 이를 위해 FRC는 대식세포, T세포, LPS, 그리고 TNFα와 같은 다양한 감염상황에 노출시켜 연구를 진행하였다. FRC가 대식세포 및 T세포와 공배양 했을 때 FRC가 형태적 변화와 FRC간 빈 공간 형성이 관찰 되었다. MMP 활성은 Y27632와 T세포에 의해 조절 되었다. 더욱이, 염증물질인 TNFα를 FRC에 처리 후 마이크로어레이를 통한 결과에서 부착분자와 MHC I antigen transporter의 발현을 조절하는 것으로 나타났다. FRC 단일층에 LPS와 대식 세포를 공배양 했을 때 NO 생성력이 크게 향상되었다. GFP antigen을 FRC와 대식세포 공배양군에 처리 했을 때 항원 흡수율이 증가되었다. 이러 결과는 FRC가 항원처리에 관여하고 있다는 것을 의미하며 이는 림프절이 항원처리과정에 연관되어 있다는 것을 제시한다.
Fibroblastic reticular cells (FRC)는 림프절 T세포 지역에 구조적 골격 형성을 하며 유입 T 세포의 안내길을 제공한다. FRC는 림프절에서 T세포 생물학 발달에 기여한다. 따라서, 이것이 FRC와 T세포 사이에서 FRC의 세포생물학적 근본 기능을 알아보게 하였다. FRC 배양 상등액은 T세포 사멸을 저해하였다. FRC 상등액은 doxorubicin에 대하여 T세포에 Bcl-xL의 발현을 증가시켰다. FRC와 T세포의 공배양은 FRC의 액틴 골격의 변화와 형태적 변화를 유도하였다. 또한, FRC와 T세포의 공배양은 T 세포가 FRC 단일층에 부착하는 결과를 유도하였고 막결합형 intercellular adhesion molecule (ICAM)-1 단백질의 발현은 약간 증가한 반면 용해성 ICAM-1 (sICAM-1) 발현은 시간 의존적으로 드라마틱하게 증가하였다. FRC는 T세포에 의해 분비되는 tumor necrosis factor (TNF) 패밀리들에 의해 CCL5, CXCL1, CXCL5, CXCL16, CCL8, CXCL13와 같은 케모카인들과 ICAM-1 그리고 MMPs의 발현량을 증가시켰다. $TNF{\alpha}$가 FRC에 처리 되었을때 $NF{\kappa}B$ canonical pathway의 RelA는 핵으로 전좌 되었지만, agonistic anti-$LT{\beta}R$ antibody로 처리된 FRC에서 non-canonical $NF{\kappa}B$ pathway의 RelB의 카운터 파트너인 p100의 분해산물 p52는 핵주변부로 축적되었다. 결론적으로 FRC는 FRC와 T세포 양방향 협력을 통해 T세포 생물학적 기능을 증진한다. 이러한 상호협력 관계는 면역반응 동안 조직의 통합성과 기능을 유지하는데 도움을 줄 것으로 사료된다.
림프절은 이차성 면역기관중 하나이다. 림프절은 복잡한 3차원적 뼈대 구조물과 스트로마 세포로 구성되어 있다. Fibroblastic reticular cells (FRC)는 T세포와 상호작용을 위해 T zone에 주로 분포하고 있는 세포이다. FRC는 CCL21, CCL19같은 홍밍유도 케모카인을 분비하거나 감염에 대비하여 림프절 세포외기질 형성에 중요한 역할을 한다. 하지만, FRC가 직접 면역반응에 관여하는지에 대하여 많이 알려져 있지 않다. 본 연구는 면역반응에 대한 FRC의 특성 규명에 대한 것이다. 이를 위해 FRC와 대식세포의 공배양, lipopolysaccharide (LPS), TNFα 자극에 노출시켜 반응성을 조사하였다. FRC와 대식세포를 공배양 하였을 때 FRC의 형태적 변화가 유도 되었고 이로 인해 FRC가 빈 공간이 형성되는 것을 확인하였다. 용해성 ICAM-1 (sICAM-1)의 발현량이 대식세포와 ROCK 저해제, Y27632를 처리 했을 경우 증가하는 것을 단백질 수준에서 확인하였다. Matrix metalloproteinase (MMP) 활성이 LPS를 처리한 FRC에서 반응시간 의존적으로 증가하는 것을 확인하였다. 더욱이, 세포외기질에 대하여 염증물질인 TNFα를 처리 했을 경우 조절되는 것을 gene chip assay를 통해서 확인하였다. 이상의 결과는 FRC가 면역반응에 직접 관여하고 있다는 것을 의미하며 이는 림프절 스트로마도 면역반응에 관여하고 있는 것으로 사료된다.
Autoimmune regulator gene (Aire)는 흉선에서 발현되며 promiscuous genes으로 알려진 흉선에서 자가항원 발현을 조절한다. Aire 와 promiscuous genes은 흉선에서 T세포 tolerance와 자가면역에 관여한다. 말초 조직 즉 림프절에서 Aire의 역할을 알아보고자 림프절 구성 세포중 하나인 fibroblastic reticular cell (FRC)을 분리 확립하였다. 마우스 림프절로부터 분리된 FRC에서 Aire의 발현을 확인하였고 또한 promiscuous antigen인 insulin의 발현도 확인하였다. Aire 과발현 플라스미드로 형질전환 후 배양 FRC에서 Insulin의 발현이 증가하였다. 이것은 Aire가 FRC에서 promiscuous gene의 발현을 조절한다는 것을 보여주며 peripheral selection과 연관되어 있을 수 있다는 것을 제시한다.
Stress fiber (SF) 변화는 세포외부의 결합인자와 세포 수용체와 결합후 리모델링을 위해 액틴골격에 신호를 전달하며 일어난다. 이 연관은 결합장소에서 기계적 활동과 신호전달활동을 조절하는 다양한 스케폴드들과 신호 전달자에 의해 매게된다. Heterotrimeric transmembrane lymphotoxin α1β2 (LTα1β2)는 용해성 homotrimeric LT α를 포함하는 tumor necrosis factor (TNF) 계로 림프조직을 구성하는데 중요한 역할을 한다. LTα1β2와 LTβR의 결합은 fibroblastic reticular cell (FRC)에서 신호전달을 촉발한다. Agonistic anti-LTβR antibody 단독 혹은 LTα 그리고 TNFα의 조합으로 LTβR 자극은 세포의 액틴과 형태적 변화를 보았다. Agonistic anti-LTβR antibody의 FRC에서 작용을 통한 세포골격 재배열이 myosin과의 관련성을 확인하기위해 myosin light chain kinase (MLCK)의 저해제인 ML-7과 myosin light chains (MLC)와 myosin phosphatase target subunit 1 (MYPT1)의 인산화에 대한 효과를 확인하였다. MLCK 저해는 액틴 세포골격 재배열과 세포형태 변화를 유도하였다. 또한, MLC와 MYPT1인산화가 LTβR 자극에 의해 줄어드는 것을 확인하였다. DNA chip 분석은 myosin and actin 구성선분이 전사체 수준에서도 줄어드는 것을 보였다. 결론적으로 LTβR 자극은 FRC에서 SF변화는 myosin과 관련되어 있다는 것을 제시한다.
림프절은 인체에 침입한 감염원에 대하여 면역반응을 일으키는 곳이다. 림프절은 스트로마세포에 의해 뚜렷하게 구획화되어 있다. 스트로마세포들은 면역세포의 이동, 활성화, 분화를 야기하기 위해 상호작용을 위해 미세환경을 제공한다. FRC는 림프절의 T zone에서 3차원 구조물을 형성하여 면역세포의 통로를 제공한다. FRC는 림프절 구조, 면역세포 리쿠르트, 면역세포와의 상호작용, 항원제시 등을 촉진시키는 역할을 한다. 염증반응 동안, FRC는 면역세포들의 면역반응을 조절하기 위해 국부적이며 분비성 물질을 통해 면역반응을 조절하고 있다. 본문 면역반응 조절을 위해 FRC가 면역반응의 setup, support 그리고 suppress 단계로 3부분에 관여하여 면역반응을 조절하고 있는 것으로 나누어 설명하였다. 전체적으로 FRC는 T 세포생물학적 효율성 증대를 위해 기능을 하는 것으로 보인다. 더불어, FRC는 식작용을 통해 선천성 면역반응에 영향을 미치고 있는 것으로 나타났다. 따라서 FRC는 림프절에서 면역반응의 immune gate-keepers로써 위치적 역할을 하는 것으로 사료된다. 전체적으로 FRC는 선천성면역과 적응면역의 조절기능에 대한 내용으로 설명하다. 이러한 협력적 피드백 루프는 염증반응 동안 림프절의 기능을 유지하는데 기여를 할 것으로 사료된다.
Lymphotoxin ${\beta}$ receptor ($LT{\beta}R$)는 TNF 계열로 림프조직의 미세구조와 기관형성에 중요한 역할을 한다. MLCK와 ROCK는 세포의 stress fiber 형성조절에 관여하는 주요 신호전달자이다. Fibroblastic reticular cell (FRC)에서 $LT{\beta}R$ 자극을 통한 이런 신호전달자들의 관련성을 알아보기 위해 ML-7 (MLCK 저해제)이 사용되었다. ML7 처리된 FRC에서 SF가 완전히 파괴되었고 anti-$LT{\beta}R$ antibody 처리 세포와 유사하게 ML7 처리 FRC에서 응축된 세포형태를 관찰 할 수 있었다. Y27632로 ROCK를 저해 했을 때 FRC의 액틴 세포골격과 세포형태 변화가 유도 되었다. FRC에서 p-MLC가 액틴과 함께 SF 구성성분을 이루었다. FRC세포 추출물로 Rho-guanosine diphosphate (GDP)/guanosine triphosphate (GTP) 교환활성을 확인했다. Agonistic anti-$LT{\beta}R$ antibody로 $LT{\beta}R$을 자극 했을 때 Rho-GDP/GTP 교환활성이 크게 감소했다. MLCK 저해처럼 $LT{\beta}R$ 자극은 MLC의 인산화를 감소시켰다. Agonistic anti-$LT{\beta}R$ antibody-treated FRC에서 세포골격 구성요소인 세포막과 세포골격 링커 역할을 하는 p-ezrin의 인산화는 감소 되었고 b- actin, 그리고 tubulin 발현도 줄었다. 이런 결과는 FRC의 $LT{\beta}R$ 신호전달을 통한 SF 조절에는 MLCK와 ROCK가 관여하고 있다는 것을 알 수 있었다.
다제약제 내성을 가지는 슈퍼 박테리아, 곰팡이, 바이러스, 기생충 감염은 주요한 건강위협인자들이다. 하지만, 건강위협 상황을 극복하기위해 현재 약제의 대안들중 항생펩타이드를 들 수 있다. 항생펩타이드는 자연계 다양한 종에서 생산된다. 항생펩타이드는 작은 단백질로 어류, 양서류, 파충류, 식물 그리고 동물의 감염으로부터 다세포생명체를 보호하는 선천성 면역에 관여하고 있다. 1980년대 이후로 매년 항생펩타이드의 수가 증가하고 있다. 박테리아, 원생생물, 곰팡이, 식물, 동물로부터 동정된 2,000가지 이상의 항생펩타이드가 항생펩타이드 데이터베이스에 등록되어 있다. 이러한 항생펩타이드의 대부분은 11-50개의 아미노산으로 구성되어 있고 하전상태는 0에서 +7까지이며 소수성은 31-70%를 차지하고 있다. 본 보고는 항생펩타이드를 생물학적 원천, 생물학적 기능, 펩타이드 성질, 공유결합패턴, 3차구조등에 의해 분류하였다. 항생펩타이드의 기능은 항균작용외에 세포주화성과 같은 세포생물학적 활성에도 기능성을 가지고 있다. 더욱이 림프절 스트로마로부터 기원한 fibroblastic reticular cell (FRC)에 염증상황 유도시 항생펩타이드가 발현되는 것을 확인하였다. FRC로부터 유도된 항생펩타이드는 whey acidic protein (WAP) 도메인을 포함하고 있었다. 이것은 단백질 도메인에 의해서도 항생펩타이드를 분류 할 수 있다는 것을 제시한다.
종양괴사인자 수용체 일종인 Lymphotoxin ${\beta}$ receptor ($LT{\beta}R$)은 림프 구조와 기관 형성에 중요한 역학을 한다. 우리는 fibroblastic reticular cell (FRC)에서 agonistic $anti-LT{\beta}R$ antibody로 $LT{\beta}R$을 자극하면 stress fiber (SF)에 변화가 생긴다는 것을 알았다. MLCK와 ROCK는 세포에서 SF 형성 기여에 중요한 역할을 한다. 본 연구는 MLCK 저해에 초점을 맞추어 $LT{\beta}R$ 신호 전달은 SF 조절로 항섬유화 효과에 대하여 조사하였다. SF 변화에 대한 $LT{\beta}R$의 기능 조사를 위해 agonistic $anti-LT{\beta}R$ antibody로 처리된 FRC와 세포 추출물을 이용하여 immunoblot, fluorescence assay와 Rho-guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange 활성 분석법으로 분석하였다. 세포막과 세포골격 연결자 ezrin은 agonistic $anti-LT{\beta}R$ antibody 처리된 FRC에서 완전히 탈인사화가 유도되었다. Actomysoisn에 의한 SF를 확인하였고 인산화 myosin light chain (p-MLC)인 함께 co-localization 되는 것도 확인하였다. ML7 처리된 FRC에서 agonistic $anti-LT{\beta}R$ antibody 처리된 세포에서 관찰되는 유사한 현상인 SF분해, 세포막 응축과 쇠퇴 현상이 나타났다. ROCK 활성저해는 액틴 골격 변화는 유도하였으나 부분적으로 SF가 세포에 남아 있었다. 반면, ML7에 의한 MLCK저해는 SF를 완전히 분해하였다. 또한, $LT{\beta}R$ 자극은 MLC 인산화를 완전히 억제하였지만, Rho-GDP/GTP exchange 활성변화에서는 감소는 되었으나 활성이 완전히 없어지지는 않았다. 결론적으로 이런 결과들은 FRC에서 $LT{\beta}R$신호전달을 통해 유도되는 SF 조절에는 MLCK가 보다 더 강력한 역할을 한다는 것을 제시하고 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.