Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.10.1199

Functional Analysis of Fibroblastic Reticular Cells Derived from Mouse Lymph Node via Bidirectional Crosstalk with T Cells  

Park, Sung Hee (Department of Biotechnology and Bioengineering, Dong-Eui University)
Lee, Jong-Hwan (Department of Biotechnology and Bioengineering, Dong-Eui University)
Publication Information
Journal of Life Science / v.23, no.10, 2013 , pp. 1199-1208 More about this Journal
Abstract
Fibroblastic reticular cells (FRCs) form the structural backbone of the T zone provide a guidance path for immigrating T cells in the lymph node (LN). FRCs may contribute directly to developing T-cell biology in the LN and allow analyses of fundamental aspects of FRC biology related to T cells. FRCs inhibited T-cell apoptosis, and FRC culture supernatants strongly induced the expression of Bcl-xL in T cells against doxorubicin. Coculture of FRC and T cells resulted in rearrangements of the actin cytoskeleton, as well as global changes in the morphology of the FRCs. In addition, when cocultured, the T cells adhered to the FRC monolayer, and the membrane intercellular adhesion molecule (ICAM)-1 was slightly increased by day-dependent manner. In contrast, the expression of soluble ICAM-1 was dramatically increased in a day-dependent manner. Several chemokines, such as CCL5, CXCL1, CXCL5, CXCL16, CCL8, CXCL13, and ICAM-1, and MMPs were expressed in FRCs sensed by tumor necrosis factor (TNF) families. Nuclear factor kappa B ($NF{\kappa}B$)-RelA of the $NF{\kappa}B$ canonical pathway was translocated into FRC nuclear by $TNF{\alpha}$. In contrast, p52 proteolyzed from p100, a counterpart of RelB of the noncanonical $NF{\kappa}B$ pathway, accumulated in the peripheral FRC nucleus by agonistic anti-$LT{\beta}R$ antibody. In summary, we propose a model in which FRCs engage in bidirectional crosstalk to increase the efficiency of T-cell biology. This cooperative feedback loop may help to maintain tissue integrity and function during immune responses.
Keywords
Agonistic anti-$LT{\beta}R$ antibody; FRC; $NF{\kappa}B$; T cell; $TNF{\alpha}$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Anderson, A. O. and Anderson, N. D. 1975. Studies on the structure and permeability of the microvasculature in normal rat lymph nodes. Am J Pathol 80, 387-418.
2 Cory, A. H., Owen, T. C., Barltrop, J. A. and Cory, J. G. 1991. Use of an aqueous soluble tetrazolium/formazan assay for cell growth assays in culture. Cancer Commun 3, 207-212.
3 Del Prete, A., Allavena, P., Santoro, G., Fumarulo, R., Corsi, M. M. and Mantovani, A. 2011. Molecular pathways in cancer-related inflammation. Biochem Med (Zagreb) 21, 264-275.
4 Gao, X., Deeb, D., Hao, J., Liu, Y., Arbab, A. S., Dulchavsky, S. A. and Gautam, S. C. 2010. Synthetic triterpenoids inhibit growth, induce apoptosis and suppress pro-survival Akt, mTOR and NF-{kappa}B signaling proteins in colorectal cancer cells. Anticancer Res 30, 785-792.
5 Gommerman, J. L. and Browning, J. L. 2003. Lymphotoxin/LIGHT, lymphoid microenvironments and autoimmune disease. Nat Rev Immunol 3, 642-655.   DOI   ScienceOn
6 Gretz, J. E., Anderson, A. O. and Shaw, S. 1997. Cords, channels, corridors and conduits: critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol Rev 156, 11-24.   DOI   ScienceOn
7 Hara, T., Shitara, S., Imai, K., Miyachi, H., Kitano, S., Yao, H., Tani-Ichi, S. and Ikuta, K. 2012. Identification of IL-7-producing cells in primary and secondary lymphoid organs using IL-7-GFP knock-in mice. J Immunol 189, 1577-1584.   DOI   ScienceOn
8 Hoffmann, A. and Baltimore, D. 2006. Circuitry of nuclear factor kappaB signaling. Immunol Rev 210, 171-186.   DOI   ScienceOn
9 Hossain, M., Qadri, S. M., Su, Y. and Liu, L. 2013. ICAM-1-mediated leukocyte adhesion is critical for the activation of endothelial LSP1. Am J Physiol Cell Physiol 304, 895-904.
10 Huang, H. Y. and Luther, S. A. 2012. Expression and function of interleukin-7 in secondary and tertiarylymphoidorgans. Sem Immunol 24, 175-189.   DOI   ScienceOn
11 Kaldjian, E. P., Gretz, J. E., Anderson, A. O., Shi, Y. and Shaw, S. 2001. Spatial and molecular organization of lymph node T cell cortex: a labyrinthine cavity bounded by an epithelium-like monolayer of fibroblastic reticular cells anchored to basement membranelike extracellular matrix. Int Immunol 13, 1243-1253.   DOI   ScienceOn
12 Katakai, T., Habiro, K. and Kinashi, T. 2013. Dendritic cells regulate high-speed interstitial T cell migration in the lymph node via LFA-1/ICAM-1. J Immunol 191, 1188-1199.   DOI   ScienceOn
13 Katakai, T., Hara, T., Lee, J. H., Gonda, H., Sugai, M. and Shimizu, A. 2004. A novel reticular stromal structure in lymph node cortex: an immuno-platform for interactions among dendritic cells, T cells and B cells. Int Immunol 16, 1133-1142.   DOI   ScienceOn
14 Malhotra, D., Fletcher, A. L., Astarita, J., Lukacs-Kornek, V., Tayalia, P., Gonzalez, S. F., Elpek, K. G., Chang, S. K., Knoblich, K., Hemler, M. E., Brenner, M. B., Carroll, M. C., Mooney, D. J. and Turley, S. J. 2012. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat Immunol 13, 499-510.
15 Katakai, T., Hara, T., Sugai, M., Gonda, H. and Shimizu, A. 2004. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J Exp Med 200, 783-795.   DOI   ScienceOn
16 Lee, J. K., Won, C., Yi, E. H., Seok, S. H., Kim, M. H., Kim, S. J., Chung, M. H., Lee, H. G., Ikuta, K. and Ye, S. K. 2013. Stat3 contributes to T-cell homeostasis by regulating prosurvival Bcl-2 family genes. Immunology doi:10.1111/imm.12133.
17 Lukacs-Kornek, V., Malhotra, D., Fletcher, A. L., Acton, S. E., Elpek, K. G., Tayalia, P., Collier, A. R. and Turley, S. J. 2011. Regulated release of nitric oxide by nonhematopoietic stroma controls expansion of the activated T cell pool in lymph nodes. Nat Immunol 12, 1096-1104.   DOI   ScienceOn
18 Malhotra, D., Fletcher, A. L. and Turley, S. J. 2013. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunol Rev 251, 160-176.   DOI   ScienceOn
19 Maraskovsky, E., O'Reilly, L. A., Teepe, M., Corcoran, L. M., Peschon, J. J. and Strasser, A. 1997. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1-/- mice. Cell 89, 1011-1019.   DOI   ScienceOn
20 Mebius, R. E. 2003. Organogenesis of lymphoid tissues. Nat Rev Immunol 3, 292-303.   DOI   ScienceOn
21 Mueller, S. N. and Germain, R. N. 2009. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol 9, 618-629.
22 Riss, T. L. and Moravec, R. A. 1992. Comparison of MTT, XTT, and a novel tetrazolium compound for MTS for in vitro proliferation and chemosensitivity assays. Mol Biol Cell (Suppl.) 3, 184a.
23 Stanley, P., Tooze, S. and Hogg, N. 2012. A role for Rap2 in recycling the extended conformation of LFA-1 during T cell migration. Biol Open 1, 1161-1168.   DOI   ScienceOn
24 Roozendaal, R., Mebius, R. E. and Kraal, G. 2008. The conduit system of the lymph node. Int Immunol 20, 1483-1487.   DOI   ScienceOn
25 Sixt, M., Kanazawa, N., Selg, M., Samson, T., Roos, G., Reinhardt, D. P., Pabst, R., Lutz, M. B. and Sorokin, L. 2005. The conduit system transports soluble antigens from the afferent lymph to resident dendritic cells in the T cell area of the lymph node. Immunity 22, 19-29.   DOI   ScienceOn
26 Springer, T. A. and Dustin, M. L. 2012. Integrin inside-out signaling and the immunological synapse. Curr Opin Cell Biol 24, 107-115.   DOI   ScienceOn
27 Thompson, W. L. and Van Eldik, L. J. 2009. Inflammatory cytokines stimulate the chemokines CCL2/MCP-1 and CCL7/MCP-3 through NFkBand MAPK dependent pathways in rat astrocytes [corrected]. Brain Res 1287, 47-57.   DOI   ScienceOn
28 Turley, S. J., Fletcher, A. L. and Elpek, K. G. 2010. The stromal and haematopoietic antigen-presenting cells that reside in secondary lymphoid organs. Nat Rev Immunol 10, 813-825.   DOI   ScienceOn
29 Wang, X., Cho, B., Suzuki, K., Xu, Y., Green, J. A., An, J. and Cyster, J. G. 2011. Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers. J Exp Med 208, 2497-2510.   DOI
30 Weih, F. and Caamano, J. 2003. Regulation of secondary lymphoid organ development by the nuclear factor-κB signal transduction pathway. Immunol Rev 195, 91-105.   DOI   ScienceOn
31 Witkowska, A. M. and Borawska, M. H. 2004. Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. Eur Cytokine Netw 15, 91-98.