Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.7.833

Classification of Antimicrobial Peptides among the Innate Immune Modulators  

Lee, Jong-Hwan (Department of Biotechnology and Bioengineering, Dong Eui University)
Publication Information
Journal of Life Science / v.25, no.7, 2015 , pp. 833-838 More about this Journal
Abstract
Multidrug-resistant super bacterial, fungal, viral, and parasitic infections are major health threaten pathogens. However, to overcome the present healthcare situation, among the leading alternatives to current drugs are antimicrobial peptides (AMPs), which are abundantly produced via various species in nature. AMPs, small host defense proteins, are in charge of the innate immunity for the protection of multicellular organisms such as fish, amphibian, reptile, plants and animals from infection. The number of AMPs identified per year has increased steadily since the 1980s. Over 2,000 natural AMPs from bacteria, protozoa, fungi, plants, and animals have been listed into the antimicrobial peptide database (APD). The majority of these AMPs (>86%) possess 11–50 amino acids with a net charge from 0 to +7 and hydrophobic percentages between 31–70%. This report classified AMP into several categories including biological source, biological functions, peptide properties, covalent bonding pattern, and 3D structure. AMP functions not only antimicrobial activity but facilitates cell biological activity such as chemotatic activity. In addition, fibroblastic reticular cell (FRC) originated from mouse lymph node stroma induced the expression of AMP in inflammatory condition. AMP induced from FRC contained whey acidic protein (WAP) domain. It suggests that the classification of AMP will be done by protein domain.
Keywords
Antimicrobial peptide; classification; fibroblastic reticular cell (FRC); protein domain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wei, G., de Leeuw, E., Pazgier, M., Yuan, W., Zou, G., Wang, J., Ericksen, B., Lu, W. Y., Lehrer, R. I., and Lu, W. 2009. Through the looking glass, mechanistic insights from enantiomeric human defensins. J. Biol. Chem. 284, 29180-29192.   DOI   ScienceOn
2 Wu, Y. and Smas, C. M. 2008. Wdnm1-like, a new adipokine with a role in MMP-2 activation. Am. J. Physiol. Endocrinol. Metab. 295, E205-E215.   DOI   ScienceOn
3 Zasloff, M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415, 389-395.   DOI
4 Porcelli, F., Buck, B., Lee, D. K., Hallock, K. J., Ramamoorthy, A. and Veglia, G. 2004. Structure and orientation of pardaxin determined by NMR experiments in model membranes. J. Biol. Chem. 279, 45815-45823.   DOI
5 Wang, G. 2013. Database-Guided Discovery of Potent Peptides to Combat HIV-1 or Superbugs. Pharmaceuticals 6, 728-758.   DOI
6 Raimondo, D., Andreotti, G., Saint, N., Amodeo, P., Renzone, G., Sanseverino, M., Zocchi, I., Molle, G., Motta, A. and Scaloni, A. 2005. A folding-dependent mechanism of antimicrobial peptide resistance to degradation unveiled by solution structure of distinctin. Proc. Natl. Acad. Sci. USA 102, 6309-6314.   DOI
7 Rozek, A., Friedrich, C. L. and Hancock, R. E. 2000. Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39, 15765-15774.   DOI
8 Seo, M. D., Won, H. S., Kim, J. H., Mishig-Ochir, T. and Lee, B. J. 2012. Antimicrobial peptides for therapeutic applications: a review. Molecules 17, 12276-12286.   DOI
9 Wang, G. 2015. Improved methods for classification, prediction, and design of antimicrobial peptides. Methods Mol. Biol. 1268, 43-66.   DOI
10 Wang, G. 208. Structures of human host defense cathelicidin LL-37 and its smallest antimicrobial peptide KR-12 in lipid micelles. J. Biol. Chem. 283, 32637-32643.
11 Wang, G., Li, Y. and Li, X. 2005. Correlation of three-dimensional structures with the antibacterial activity of a group of peptides designed based on a nontoxic bacterial membrane anchor. J. Biol. Chem. 280, 5803-5811.   DOI
12 Jenssen, H., Hamill, P. and Hancock, R. E. 2006. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491-511.   DOI
13 Karlstetter, M., Walczak, Y., Weigelt, K., Ebert, S., Van den Brulle, J., Schwer, H., Fuchshofer, R. and Langmann, T. 2010. The novel activated microglia/macrophage WAP domain protein, AMWAP, acts as a counter-regulator of proin-flammatory response. J. Immunol. 185, 3379-3390.   DOI
14 Mekori, Y. A., Hershko, A. Y., Frossi, B., Mion. F., and Pucillo, C. E. 2015. Integrating innate and adaptive immune cells: Mast cells as crossroads between regulatory and effector B and T cells. Eur. J. Pharmacol. pii: S0014-2999(15)00400-004008.
15 Mookherjee, N. and Hancock, R. E. W. 2007. Cationic host defence peptides: Innate immune regulatory peptides as a novel approach for treating infections. Cell. Mol. Life Sci. 64, 922-933.   DOI
16 Kolar, S., Baidouri, S., Hanlon, H. and McDermott, A. M. 2013. Protective role of murine β-defensins 3 and 4 and cathelin-related antimicrobial peptide in Fusarium solani keratitis. Infect Immun. 81, 2669-2677.   DOI   ScienceOn
17 Marr, A. K., Gooderham, W. J. and Hancock, R. E. W. 2006. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol. 6, 468-472.   DOI
18 Mysliwy, J., Dingley, A. J., Stanisak, M., Jung, S., Lorenzen, I., Roeder, T., Leippe, M. and Grötzinger, J. 2010. Caenopore-5: the three-dimensional structure of an antimicrobial protein from Caenorhabditis elegans. Dev. Comp. Immunol. 34, 323-330.   DOI
19 Narayana, J. L. and Chen, J. Y. 2015. Antimicrobial peptides: Possible anti-infective agents. Peptides pii: S0196-9781 (15)00168-00170.
20 Hancock, R. E. W., Brown, K. L. and Mookherjee, N. 2006. Host defence peptides from invertebrates—Emerging antimicrobial strategies. Immunobiology 211, 315-322.   DOI
21 Bauer, F., Schweimer, K., Klüver, E., Conejo-Garcia, J. R., Forssmann, W. G., Rösch, P., Adermann, K. and Sticht, H. 2001. Structure determination of human and murine beta-defensins reveals structural conservation in the absence of significant sequence similarity. Protein Sci. 12, 2470-2479.
22 Hancock, R. E. W. 1997. Peptide antibiotics. Lancet 349, 418- 422.   DOI
23 Brown, K. L. and Hancock, R. E. W. 2006. Cationic host defense (anti-microbial) peptides. Curr. Opin. Immunol. 18, 24-30.   DOI
24 Conibear, A. C., Rosengren, K. J., Harvey, P. J. and Craik, D. J. 2012. Structural characterization of the cyclic cystine ladder motif of θ-defensins. Biochemistry 48, 9718-9726.
25 Hancock, R. E. W. 2004. Cationic peptides: Effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1, 156-164.
26 Huo, T. I. 2010. The first case of multidrug-resistant NDM-1-harboring Enterobacteriaceae in Taiwan: here comes the superbacteria! J. Chin. Med. Assoc. 73, 557-558.   DOI