Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.2.256

Signals of MLCK and ROCK Pathways Triggered via Lymphotoxin β Receptor are Involved in Stress Fiber Change of Fibroblastic Reticular Cells  

Kim, Dae Sik (Department of Biotechnology and Bioengineering, College of Engineering, Dong-eui University)
Lee, Jong-Hwan (Department of Biotechnology and Bioengineering, College of Engineering, Dong-eui University)
Publication Information
Journal of Life Science / v.29, no.2, 2019 , pp. 256-264 More about this Journal
Abstract
Lymphotoxin ${\beta}$ receptor ($LT{\beta}R$), a member of the tumor necrosis factor receptor family, plays an important role in lymphoid tissue's architecture and organogenesis. In contrast, MLCK and ROCK play critical roles in the regulation of stress fiber (SF) formation in cells. To determine whether $LT{\beta}R$ stimulation in fibroblastic reticular cells (FRCs) is involved in these signaling pathways, myosin light chain kinase inhibitor-7 (ML-7) was used to inhibit them. ML7-treated FRCs completely blocked SFs and showed retraction and shrinkage processes comparable to those observed in agonistic anti-$LT{\beta}R$ antibody-treated cells. The inhibition of ROCK activity with Y27632-induced changes in actin cytoskeleton organization and cell morphology in FRCs. Actin bundles rearranged into SFs, and phospho-myosin light chain (p-MLC) co-localized in FRCs. We checked the level of Rho-guanosine diphosphate (RhoGDP)/guanosine triphosphate (GTP) exchange activity using FRC lysate. When $LT{\beta}R$ was stimulated with agonistic anti-$LT{\beta}R$ antibodies, Rho-GDP/GTP exchange activity was markedly reduced. Regarding $LT{\beta}R$ signaling with a focus on MLCK inhibition, we showed that the phosphorylation of MLCs was reduced by $LT{\beta}R$ stimulation in FRCs. Cytoskeleton components, such as tubulin, b-actin, and phospho-ezrin proteins acting as membrane-cytoskeleton linkers, were produced in de-phosphorylation, and they reduced expression in agonistic anti-$LT{\beta}R$ antibody-treated FRCs. Collectively, the results suggested that MLCK and ROCK were simultaneously responsible for SF regulation triggered by $LT{\beta}R$ signaling in FRCs.
Keywords
FRC (Fibroblastic reticular cell); $LT{\beta}R$ (Lymphotoxin ${\beta}$ receptor); MLCK; ROCK; SF (stress fiber);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Acton, S. E., Farrugia, A. J., Astarita, J. L., Mourao-Sa, D., Jenkins, R. P., Nye, E., Hooper, S., van Blijswijk, J., Rogers, N. C., Snelgrove, K. J., Rosewell, I., Moita, L. F., Stamp, G., Turley, S. J., Sahai, E. and Reis e Sousa, C. 2014. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature 514, 498-502.   DOI
2 Blue, E. K., Goeckeler, Z. M., Jin, Y., Hou, L., Dixon, S. A., Herring, B. P., Wysolmerski, R. B. and Gallagher, P. J. 2002. 220- and 130-kDa MLCKs have distinct tissue distributions and intracellular localization patterns. Am. J. Physiol. Cell Physiol. 282, C451-460.   DOI
3 Brinkman, C. C., Iwami, D., Hritzo, M. K., Xiong, Y., Ahmad, S., Simon, T., Hippen, K. L., Blazar, B. R. and Bromberg, J. S. 2016. Treg engage lymphotoxin beta receptor for afferent lymphatic transendothelial migration. Nat. Commun. 7, 12021. doi: 10.1038/ncomms12021   DOI
4 Browning, J. L., Allaire, N., Ngam-Ek, A., Notidis, E., Hunt, J., Perrin, S. and Fava, R. A. 2005. Lymphotoxin-${\beta}$ receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23,539-550.   DOI
5 Chai, Q., Onder, L., Scandella, E., Gil-Cruz, C., Perez-Shibayama, C., Cupovic, J., Danuser, R., Sparwasser, T., Luther, S. A., Thiel, V., Rulicke, T., Stein, J. V., Hehlgans, T. and Ludewig, B. 2013. Maturation of lymph node fibroblastic reticular cells from myofibroblastic precursors is critical for antiviral immunity. Immunity 38, 1013-1024.   DOI
6 Chiang, E. Y., Kolumam, G. A., Yu, X., Francesco, M., Ivelja, S., Peng, I., Gribling, P., Shu, J., Lee, W. P., Refino, C. J., Balazs, M., Paler-Martinez, A., Nguyen, A., Young, J., Barck, K. H., Carano, R. A., Ferrando, R., Diehl, L., Chatterjea, D. and Grogan, J. L. 2009. Targeted depletion of lymphotoxin-alpha-expressing TH1 and TH17 cells inhibits autoimmune disease. Nat. Med. 15, 766-773.   DOI
7 Chirino, Y. I., Garcia-Cuellar, C. M., Garcia-Garcia, C., Soto-Reyes, E., Osornio-Vargas, a. R., Herrera, L. A., Lopez-Saavedra, A., Miranda, J., Quintana-Belmares, R., Perez, I. R. and Sanchez-Perez, Y. 2017. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells. Toxicol. Lett. 272, 29-37.   DOI
8 Denton, A. E., Roberts, E. W., Linterman, M. A. and Fearon, D. T. 2014. Fibroblastic reticular cells of the lymph node are required for retention of resting but not activated CD8+T cells. Proc. Natl. Acad. Sci. USA. 111, 12139-12144.   DOI
9 Dubey, L. K., Karempudi, P., Luther, S. A., Ludewig, B. and Harris, N. L. 2017. Interactions between fibroblastic reticular cells and B cells promote mesenteric lymph node lymphangiogenesis. Nat. Commun. 8, 367. doi: 10.1038/s41467- 017-00504-9.   DOI
10 Elson, E. L. and Genin, G. M. 2013. The role of mechanics in actin stress fiber kinetics. Exp. Cell Res. 319, 2490-2500.   DOI
11 Fritz, J. H. and Gommerman, J. L. 2010. Cytokine/stromal cell networks and lymphoid tissue environments. J. Interferon Cytokine Res. 31, 277-289 .   DOI
12 Gil-Cruz, C., Perez-Shibayama, C., Onder, L., Chai, Q., Cupovic, J., Cheng, H. W., Novkovic, M., Lang, P. A., Geuking, M. B., McCoy, K. D., Abe, S., Cui, G., Ikuta, K., Scandella, E. and Ludewig, B. 2016. Fibroblastic reticular cells regulate intestinal inflammation via IL-15-mediated control of group 1 ILCs. Nat. Immunol. 17, 1388-1396.   DOI
13 Gommerman, J. L. and Browning, J. L. 2003. Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat. Rev. Immunol. 3, 642-655.   DOI
14 Girard, J. P., Moussion, C. and Forster, R. 2012. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol. 12, 762-773.   DOI
15 Lee, J. S., Kim, Y. H. and Lee, J. H. 2013. Involvement of RhoA/ROCK signaling for alteration of stress fiber via lymphotoxin ${\beta}$ receptor stimulation in fibroblastic reticular cell isolated from lymph node. Anim. Cells Syst. 17, 421-428.   DOI
16 Kassianidou, E., Hughes, J. H. and Kumar, S. 2017. Activation of ROCK and MLCK tunes regional stress fiber formation and mechanics via preferential myosin light chain phosphorylation. Mol. Biol. Cell 28, 3832-3843.   DOI
17 Katakai, T., Hara, T., Sugai, M., Gonda, H. and Shimizu, A. 2004. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783-795.   DOI
18 Kedl, R. M. and Tamburini, B. A. 2015. Antigen archiving by lymph node stroma: A novel function for the lymphatic endothelium. Eur. J. Immunol. 45, 2721-2729.   DOI
19 Kumar, V., Dasoveanu, D. C., Chyou, S., Tzeng, T. C., Rozo, C., Liang, Y., Stohl, W., Fu, Y. X., Ruddle, N. H. and Lu, T. T. 2015. A dendritic-cell-stromal axis maintains immune responses in lymph nodes. Immunity 42, 719-730.   DOI
20 Lee, J. H., Katakai, T., Hara, T., Gonda, H., Sugai, M. and Shimizu, A. 2004. Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation. J. Cell Biol. 167, 327-337.   DOI
21 Malhotra, D., Fletcher, A. L. and Turley, S. J. 2013. Stromal and hematopoietic cells in secondary lymphoid organs: partners in immunity. Immunol. Rev. 251, 160-176.   DOI
22 Qin, Z., Fisher, G. J., Voorhees, J. J. and Quan, T. 2108. Actin cytoskeleton assembly regulates collagen production via TGF-${\beta}$ type II receptor in human skin fibroblasts. J. Cell Mol. Med. 22, 4085-4096.   DOI
23 Yamaguchi, H. and Sakai, R. 2015. Direct interaction between carcinoma cells and cancer associated fibroblasts for the regulation of cancer invasion. Cancers (Basel) 7, 2054-2062.   DOI
24 Ramachandran, C., Patil, R. V., Combrink, K., Sharif, N. A. and Srinivas, S. P. 2011. Rho-Rho kinase pathway in the actomyosin contraction and cell-matrix adhesion in immortalized human trabecular meshwork cells. Mol. Vis. 17, 1877-1890.
25 Scarzello, A. J., Jiang, Q., Back, T., Dang, H., Hodge, D., Hanson, C., Subleski, J., Weiss, J. M., Stauffer, J. K., Chaisaingmongkol, J., Rabibhadana, S., Ruchirawat, M., Ortaldo, J., Wang, X. W., Norris, P. S., Ware, C. F. and Wiltrout, R. H. 2016. $LT{\beta}R$ signalling preferentially accelerates oncogenic AKT-initiated liver tumours. Gut 65, 1765-1775.   DOI
26 Sobocinski, G. P., Toy, K., Bobrowski, W. F., Shaw, S., Anderson, A. O. and Kaldjian, E. P. 2010. Ultrastructural localization of extracellular matrix proteins of the lymph node cortex: evidence supporting the reticular network as a pathway for lymphocyte migration. BMC Immunol. 11, 42.   DOI