• Title/Summary/Keyword: ferromagnetic material

Search Result 185, Processing Time 0.026 seconds

A Study on the Deperm of Ferromagnetic Material using Preisach Model (Preisach 모델을 이용한 강자성체의 탈자기법 연구)

  • Ju, Hye Sun;Park, Gwan Soo;Won, Hyuk
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • Ferromagnetic material's residual magnetization is remained because of the interaction between domains from external apply field, so the electrical and electronic industry and area of defense development request deperm protocol which makes the residual magnetization to 0. But the deperm protocols which are used theses days are developed by using only experience and experiment, so we have to develop deperm protocol considering hysteresis curve. In this paper, Anhysteretic Deperm, Deperm-ME, Flash-Deperm were analyzed using two dimensional finite element method and Preisach model that was formulated by property of magnetic materials. From that analysis, the relations between hysteresis curve and deperm variable are compared by analyzing the trace of Preisach plane. Also, an efficient current ratio of deperm protocol, is proposed.

Coersivity Alteration of Free Layer in the [Co/Pd] Spin-valves with Perpendicular Magnetic Anisotropy ([Pd/Co] 다층박막을 이용한 수직스핀밸브 구조에서 비자성층에 인접한 강자성 물질과 그 두께에 따른 자유층의 보자력 변화)

  • Heo, Jang;Choi, Hyong-Rok;Lee, Ky-Am
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.3
    • /
    • pp.89-93
    • /
    • 2010
  • We study the giant magneto-resistance (GMR), coercivity and their dependence on the ferromagnetic layers adjacent to the nonmagnetic layer in a spin-valve structure, [Pd/ferromagnetic] multilayers with perpendicular anisotropy. We fabricated a basic spinvalve structure of $[Pd/Co]_2$/ferro-magnetic layer/nonmagnet/ferro-magnetic layer/$[Pd/Co]_2$/FeMn and investigated the dependence of its GMR and magnetic properties such ad coercivity on the ferromagnetic material to reduce the coercivity of the free layer. We try to reduce the freelayer coercivity by controlled the anisotropy, we insert the material NiFe, $Co_8Fe_2$, $Co_9Fe_1$ to ferromagnetic layers adjacent to the Cu layer. Then, we have been able to reduce the coercivity as low as 100 Oe, and also achieved 6.7% of magneto-resistance ratio when the ferromagnetic layer thickness was 0,7 nm.

The Relation of Crystallite Size and Ni2+ Content to Ferromagnetic Resonance Properties of Nano Nickel Ferrites

  • Lafta, Sadeq H.
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.188-195
    • /
    • 2017
  • The ferromagnetic resonance and other magnetic properties dependence on $Ni^{2+}/Fe^{3+}$ ratio and crystallite size were investigated for nano nickel ferrite ($NiFe_2O_4$). The crystallite size was controlled by controlling the nickel content in the starting material solution. The XRD and TEM were utilized to measure the crystallite size through Scherrer formula and particle size respectively. The most frequent particle sizes were lower than crystallite size, which ranged from 16.5 to 44.65 nm. The general behavior of M-H loop shapes and parameters showed superparamagnetic one. The saturation magnetization had a maximum value at $Ni^{2+}/Fe^{3+}$ molar ratio equal to 0.186. The FMR signals showed, generally, broad linewidths, where the maximum width and minimum resonance field were for the sample of the lowest crystalline size. Furthermore, FMR resonance field shows linear dependence on crystalline size. The fitting relation was estimated to express this linear dependency on the base of behavior coincidence between particle size and the inverse of saturation magnetization. The given interpretations to understand the intercept and the slope meanings of the fitted relation were based on Larmor equation, and inhomogeneous in the anisotropy constant.

Cesium removal in water using magnetic materials ; A review (자성체 물질을 이용한 수중의 세슘제거 동향)

  • Yeo, Wooseok;Cho, Byungrae;Kim, Jong Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.395-408
    • /
    • 2018
  • Even after the Fukushima nuclear accident in 2011, the rate of production of electric energy using nuclear energy is increasing, but there is a great danger such as the radioactive waste produced when using nuclear power, the catastrophic accident of nuclear power plant, and connection with nuclear weapons. In particular, Cs present in the ionic form of alkaline elements has a long half-life (30.17 years) because it is readily absorbed by the organism and emits intense gamma rays, thus presenting a serious radiation hazard. Therefore, it must be completely removed before it can be released into the natural ecosystem, because it can adversely affect not only humans but also natural ecosystems. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. In addition, researches have been doing to synthesize magnetic materials with adsorbents such as HCF and PB, and it shows a great effect in the removal rate of Cs present in wastewater or the maximum Cs adsorption amount. In particular, when a magnetic material was applied, excellent results were obtained in which only Cs was selectively removed from other cations. However, new problems such as applicability in the sea where Cs is directly released, applicability in various pH ranges, and failure to preserve the magnetizing force possessed by the magnetic body have been found. However, researches using ferromagnetic field with stronger magnetic properties than those of magnetic bodies is considered to be insufficient. Therefore, it is considered that if the researches combining the ferromagnetic field with the magnetization ability and functional adsorbents more actively, the radioactive material Cs which adversely affects the natural ecosystem can be effectively removed.