A new EM-material comprised of nano-composite ferromagnetic oxide films

Toshitaka Fujii*1, Atsushi Kajima2, and Mitsuteru Inoue3

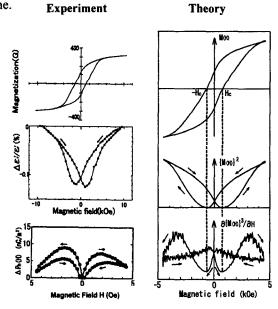
¹ Department of Electronics and Information Engineering, Aichi University of Technology, 50-2 Manori, Nishi-hazama-cho, Gamagori, Aichi 443-0047 Japan

² Department of Electrical and Electronic Engineering, Kitakyushu National College of Technology, 5-20-1 Shii, Kokura-minami-ku, Kitakyushu, Fukuoka 802-0985 Japan

³ Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibari-ga-oka, Tempaku-cho, Toyohashi, Aichi 441-8580 Japan

We have reported that nano-composite ferromagnetic oxide films with the Bi_2O_3 - Fe_2O_3 - $PbTiO_3$ system prepared by rf-reactive sputtering exhibit ferromagnetism and ferroelectricity above room temperature^(1,2). We found that these films show a kind of electromagnetic (EM-) effect, ie. the electric polarization ΔP is induced by applying magnetic field H. An example of the experimental results is shown in the left side figures for a film with $0.18Bi_2O_3$ - $0.7Fe_2O_3$ - $0.12PbTiO_3$ after post-annealing at 650°C for 3h in air. The top figure is the magnetization curve, the middle one is the relative change of the dielectric permeability $\Delta \varepsilon_r$ '/ ε_r ' by H, and the bottom one is ΔP induced by H, where an ac tickle

field $h(\omega)$ was applied simultaneously normal to the film plane. These experimental results are qualitatively explained by a model based on magnetization rotation of ferromagnetic nano-clusters randomly dispersed and embedded in the ferroelectric glassy matrix. The calculated results are drawn in the right side figures. The key-factors to determine ΔP are summarized as: $^{(3,4)}$


$$\Delta P_{\rm E}({\rm H}) \propto \Delta \varepsilon_{\rm r}' / \varepsilon_{\rm r}' \propto [{\rm M}({\rm H})]^2$$

$$\Delta P_h(H) \propto \partial / \partial H[M(H)]^3$$
,

In calculation, we used the measured magnetization M(H) (the top figure) was used.

References

- [1] T. Fujii et al., J.Appl.Phys., 64, 5434 (1988).
- [2] A.Kajima et al., J.Appl.Phys., 69, 3663 (1991).
- [3] A.Kajima et al., J.Magn.Magn.Mater., 258-259, 597 (2003)
- [4] T.Fujii et al., Materials Science Forum, 437-438, 27 (2003)

^{*}Corresponding author: e-mail: fujii@aut.ac.jp, Phone: +81 533 68 1135, Fax: +81 533 68 0352