Browse > Article
http://dx.doi.org/10.21289/KSIC.2018.21.6.395

Cesium removal in water using magnetic materials ; A review  

Yeo, Wooseok (Dept. of Civil Engineering)
Cho, Byungrae (Dept. of Civil Engineering)
Kim, Jong Kyu (Dept. of Civil Engineering)
Publication Information
Journal of the Korean Society of Industry Convergence / v.21, no.6, 2018 , pp. 395-408 More about this Journal
Abstract
Even after the Fukushima nuclear accident in 2011, the rate of production of electric energy using nuclear energy is increasing, but there is a great danger such as the radioactive waste produced when using nuclear power, the catastrophic accident of nuclear power plant, and connection with nuclear weapons. In particular, Cs present in the ionic form of alkaline elements has a long half-life (30.17 years) because it is readily absorbed by the organism and emits intense gamma rays, thus presenting a serious radiation hazard. Therefore, it must be completely removed before it can be released into the natural ecosystem, because it can adversely affect not only humans but also natural ecosystems. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. Many adsorbents and ion exchangers which have high Cs removal efficiency have been used in recent years to completely separate and remove by self separation in water. In addition, researches have been doing to synthesize magnetic materials with adsorbents such as HCF and PB, and it shows a great effect in the removal rate of Cs present in wastewater or the maximum Cs adsorption amount. In particular, when a magnetic material was applied, excellent results were obtained in which only Cs was selectively removed from other cations. However, new problems such as applicability in the sea where Cs is directly released, applicability in various pH ranges, and failure to preserve the magnetizing force possessed by the magnetic body have been found. However, researches using ferromagnetic field with stronger magnetic properties than those of magnetic bodies is considered to be insufficient. Therefore, it is considered that if the researches combining the ferromagnetic field with the magnetization ability and functional adsorbents more actively, the radioactive material Cs which adversely affects the natural ecosystem can be effectively removed.
Keywords
Cesium; Magnetic field; Ferromagnetic; Self separation; Prussian blue;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. A. Kadam, J. Jang, D. S. Lee, "Facile synthesis of pectin-stabilized magnetic graphene oxide Prussian blue nanocomposites for selective cesium removal from aqueous solution", Bioresource Technology, 216, pp. 391-398, (2016).   DOI
2 C. Ling, S. Chang, W. Chen, W. Han, Z. Li, Z. Zhang, Y. Daia, D. Chen, "Facile one-pot synthesis of magnetic Prussian blue core/shell nanoparticles for radioactive cesium removal", RSC Advances, 98, (2016).
3 Y. K. Kim, T. Kim, Y. Kim, D. Harbottle, J. W. Lee, "Highly effective Cs+ removal by turbidity-free potassium copperhexacyanoferrateimmobilized magnetic hydrogels", Journal of Hazardous Materials, 340, pp. 130-139, (2017).   DOI
4 IAEA, "Nuclear Power Reactors in the World : 2015 Edition", International Atomic Energy Agency, pp. 19, (2015).
5 Y. I. Lee, "Nuclear Power in Korea & Vision for the Future", The Korean Physical Sociey, (2011).
6 M. Manolopoulou, E. Vagena, S. Stoulos, A. Ioannidou, C. Papastefanou, "Radioiodine and radiocesium in Thessaloniki, Northern Greece due to the Fukushima nuclear accident", J. Environ. Radioact, 102, pp. 796-797, (2011).   DOI
7 Y. Park, Y. C. Lee, W. S. Shina, S. J. Choi, "Removal of cobalt, strontium and cesium from radioactive laundry wastewater", J. Chem. Eng, 162, pp. 685-695, (2010).   DOI
8 A. Khannanov, V. V. Nekljudov, B. Gareev, A. Kiiamov, J. M. Tour, A. M. Dimiev, "Oxidatively modified carbon as efficient material for removing radio nuclides from water", Carbon, 115, pp. 394-401, 2017.   DOI
9 T. Charles, C. T. Garten, D. M. Hamby, K. A. Higley, T. G. Hinton, D. I. Kaplan, D. J. Rowan, R. G. Schreckhise, "Cesium-137 in the Environment - Radioecology and Approaches to Assessment and Management : (Report No. 154)", National Council on Radiation Protection and Measurements, 2014.
10 H. G. Mobtaker, T. Yousefi, S. M. Pakzad, "Cesium removal from nuclear waste using a magnetical CuHCNPAN nano composite", Journal of Nuclear Materials, 482, pp. 306-312, (2016).   DOI
11 G. Gurboga, H. Tel, Y. Altas, "Sorption studies of cesium on TiO2, SiO2 mixed gel spheres", Sep. Purif. Technol, 47, pp. 96-104, (2006).   DOI
12 R. R. Sheha, "Synthesis and characterization of magnetic hexacyanoferrate (II) polymeric nanocomposite for separation of cesium from radioactive waste solutions", Journal of Colloid and Interface Science, 388(1), pp. 21-30, (2012).   DOI
13 IAEA, "International Atomic Energy Agency, New Developments and Improvements in Processing of Problematic Radioactive Waste", IAEA-TECDOC-1579, (2007).
14 S. P. Paker, McGraw-Hill Encyclopedia of Chemistry, McGraw Hill, New York, (1983).
15 S. Imoto, "Chemical state of fisson products in irradiated UO2", J. of Nuclear Materials, 5, pp. 19-27, (1986).
16 E. B. Podgorsak, "Modes of Radioactive Decay", Radiation Physics for Medical Physicists, pp. 475-521, (2009).
17 T. Sangvanich, V. Sukwarotwat, R. J. Wiacek, R. M. rudzien, G. E. Fryxell, R. S. Addleman, C. Timchalk, A. Yantasee, "Selective capture of cesium and thallium from natural waters and simulated wastes with copper ferrocyanide functionalized mesoporous silica", J. Hazard. Mater, 182, pp. 225-231, (2010).   DOI
18 Z. Hedayatnasab, F. Abnisa, W. M. A. W. Daud, "Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application", Materials & Design, 123, pp. 174-196, (2017).   DOI
19 A. A. Kaufman, R. O. Hansen, R. L. K. Kleinberg, "Chapter 6 Paramagnetism, Diamagnetism, and Ferromagnetism", Methods in Geochemistry and Geophysics, 42, pp. 207-254, (2008).
20 http://www.science20.com/mei/blog/blocking_temperaure
21 D. X. Chen, E. Pardo, Y. H. Zhu, L. X. Xiang, J. Q. Ding, "Demagnetizing correction in fluxmetric measurements of magnetization curves and hysteresis loops of ferromagnetic cylinders", Journal of Magnetism and Magnetic Materials, 449, pp. 447-454, (2018).   DOI
22 A. Harres, M. Mikhov, V. Skumryev, A, M, H, D. Andrade, J. E. Schmidt, J. Geshev, "Criteria for saturated magnetization loop", Journal of Magnetism and Magnetic Materials, 402, pp. 76-82, (2016).   DOI
23 K. Simeonidls, E. Kapara, T. Samaras, M. Angelakeris, N. Pliatsikas, G. Vourlias, M. Mitrakas, N. Andritsos, "Optimizing magnetic nanoparticles for drinking water technology- The case of Cr(VI)", Science of The Total Environment, 535, pp. 61-68, (2015).   DOI
24 R. D. Ambashta, M. Sillanpaa, "Water purification using magnetic assistance: A review", Journal of Hazardous Materials, 180(1-3), pp. 38-49, (2010).   DOI
25 C. W. Lim, I. S. Lee, "Magnetically recyclable nanocatalyst systems for the organic reactions", Nano Today, 5, pp. 412-434, (2010).   DOI
26 S. N. Podoynitsyn, O. N. Sorokina, A. L. Kovarski, "High-Gradient magnetic separation using ferromagnetic membrane", Journal of Magnetism and magnetic Materials, 397, pp. 51-56, (2016).   DOI
27 A. K. Vipin, B. Hu, B. Fugetsu, "Prussian blue caged in alginate/calcium beads as adsorbents for removal of cesium ions from contaminated water", J. Hazard. Mater, 258, pp. 93-101, (2013).
28 J. Jang, D. S. Lee, "Enhanced adsorption of cesium on PVA-alginate encapsulated Prussian blue-graphene oxide hydrogel beads in a fixed-bed column system", Bioresour. Technol, 218, pp. 294-300, (2016).   DOI
29 B. Hui, Y. Zhang, L. Ye, "Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal", Chem. Eng. J, 235, pp. 207-214, (2014).   DOI
30 A. H. Lu, E. L. Salabas, F. Schuth, "Magnetic nanoparticles: synthesis, protection, functionalization, and application Angew", Chem. Int. Ed, 46, pp. 1222-1244, (2007).   DOI
31 K. S. Hwang, C. W. Park, K. W. Lee, S. J. Park, H. M. Yang, "Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 516, pp. 375-382, (2017).   DOI
32 R. Cortes, M. T. Olguin, M. Solache, "Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems", Desalination, 258, pp. 164-166, (2010).   DOI
33 A. A. Moament, H. A. Ibrahim, N. Abdelmonem, I. M. Ismail, "Thermodynamic analysis for the sorptive removal of cesium and strontium ions onto synthesized magnetic nano zeolite", Microporous and Mesoporous Materials, 223, pp. 187-195, (2016).   DOI
34 R. R. Sheha, E. Metwally, "Equilibrium isotherm modeling of cesium adsorption onto magnetic materials", J. Hazard Mater, 143, pp. 354-357, (2007).   DOI
35 H. Faghihian, M. Moayed, A. Firooz, I. Mozhgan, "Synthesis of a novel magnetic zeolite nanocomposite for removal of $Cs^+$ and $Sr_2^+$ from aqueous solution: Kinetic, equilibrium, and thermodynamic studies", J. Colloid Interface Sci, 393, pp. 445-451, (2013).   DOI
36 O. A. A. Moamen, I. M. Ismail, N. Abdelmonem, R. O. A. Rahman, J. Taiwan, "Equilibrium isotherm modeling of cesium adsorption onto magnetic materials", Inst. Chem. Eng, 143, pp. 1-12, (2007)
37 H. Yang, H. Li, J. Zhai, L. Sun, Y. Zhao, H. Yu, "Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil", Chemical Engineering Journal, 246, pp. 10-19, (2014).   DOI
38 H. Yang, L. Sun, J. Zhai, H. Li, "In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water", Journal of Materials Chemistry A, 2, 326, (2014).   DOI
39 A. Gehan, "Mathematical model to investigate the behaviour of the systems of ferromagnetic particles under the magnetic fields", Applied Mathematics and Computation, 320, pp. 654-676, (2018).   DOI
40 P. D. C. Guio, T. Proll, H. Hofbauer, "Measurement of ferromagnetic particle concentration for characterization of fluidized bed fluid-dynamics", Powder Technology, 239, pp. 147-154, (2013).   DOI
41 Y. K. Kim, Y. Kim, S. Kim, D. Harbottle, J. W. Lee, "Solvent-assisted synthesis ofpotassium copper hexacyanoferrate embedded 3D-interconnected poroushydrogel for highly selective and rapid cesium ion removal", J. Environ. Chem. Eng, 5, pp. 975-986, (2017).   DOI
42 H. Zhang, X. Zhao, J. Wei, F. Li, "Removal of cesium from low-level radioactive wastewaters using magnetic potassium titanium hexacyanoferrate", Chemical Engineering Journal, 275, pp. 262-270, (2015).   DOI
43 H. M. Yang, K. S. Hwang, C. W. Park, K. W. Lee, "Sodium-copper hexacyanoferrate-functionalized magnetic nanoclusters for the highly efficient magnetic removal of radioactive caesium from seawater", Water Research, 125, pp. 81-90, (2017).   DOI
44 A. Nakamura, K. Sugawara, S. Nakajima, K. Murakami, "Adsorption of Cs ions using a temperature-responsive polymer/magnetite/zeolite composite adsorbent and separation of the adsorbent from water using high-gradient magnetic separation", Colloids and Surfaces A: Physicochemical and Engineering Aspects, 527, pp, 63-69, (2017).
45 C. Thammawong, P. Opaprakasit, P. Tangboriboonrat, P. Sreearunothai, "Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment", J Nanopart Res, 15: 1689, (2013).   DOI
46 H. M. Yang, S. C. Jang, S. B. Hong, K. W. Lee, C. Roh, Y. S. Huh, B. K. Seo, "Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water", Journal of Alloys and Compounds, 657, pp. 387-393, (2016).   DOI