Browse > Article
http://dx.doi.org/10.4283/JKMS.2010.20.3.089

Coersivity Alteration of Free Layer in the [Co/Pd] Spin-valves with Perpendicular Magnetic Anisotropy  

Heo, Jang (Thin Film Mechatronic Laboratory, Department of Physics, Graduate School, Dankook University)
Choi, Hyong-Rok (Thin Film Mechatronic Laboratory, Department of Physics, Graduate School, Dankook University)
Lee, Ky-Am (Thin Film Mechatronic Laboratory, Department of Physics, Graduate School, Dankook University)
Abstract
We study the giant magneto-resistance (GMR), coercivity and their dependence on the ferromagnetic layers adjacent to the nonmagnetic layer in a spin-valve structure, [Pd/ferromagnetic] multilayers with perpendicular anisotropy. We fabricated a basic spinvalve structure of $[Pd/Co]_2$/ferro-magnetic layer/nonmagnet/ferro-magnetic layer/$[Pd/Co]_2$/FeMn and investigated the dependence of its GMR and magnetic properties such ad coercivity on the ferromagnetic material to reduce the coercivity of the free layer. We try to reduce the freelayer coercivity by controlled the anisotropy, we insert the material NiFe, $Co_8Fe_2$, $Co_9Fe_1$ to ferromagnetic layers adjacent to the Cu layer. Then, we have been able to reduce the coercivity as low as 100 Oe, and also achieved 6.7% of magneto-resistance ratio when the ferromagnetic layer thickness was 0,7 nm.
Keywords
perpendicular magnetic anisotropy; coercivity; Pd/Co multilayer; Spin-valve; magneto-resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Hashimoto, Y. Ochiai, and K. Aso, J. Appl. Phys. 66, 4909(1989).   DOI
2 V. S. Speriosu, J. P. Nozieres, B. A. Gurney, B. Dieny, T. C.Huang, and H. Lefakis, Phys. Rev. B. 47, 11579 (1993).   DOI   ScienceOn
3 M. Takagishi, K. Koi, M. Yoshikawa, T. Funayama, H.Iwasaki, and M. Sahashi, IEEE Trans. Magn. 38, 2277 (2002).   DOI   ScienceOn
4 K. Nagasaka, Y. Seyama, Y. Shimizu, and A. Tanaka, J. Magn. Soc. Jpn 25, 807 (2001).   DOI
5 F. Garcia, J. Moritz, F. Ernult, S. Auffret, B. Rodmacq, B.Diney, J. Camarero, Y. Pennec, S. Pizzini, and J. Vogel, IEEE Trans. Magn. 38, 2730 (2002).   DOI   ScienceOn
6 W. Xiaobin, C. Yiran, L. Hai, D. Dimitrov, and L. Harry, IEEE Trans. Magn. 44, 2479 (2008).   DOI   ScienceOn
7 E. Chen, D. Apalkov, Z. Diao, A. Driskill-Smith, D. Druist, D.Lottis, V. Nikitin, X. Tang, S. Watts, S. Wang, S. A. Wolf,A. W. Ghosh, J. W. Lu, S. J. Poon, M. Stan, W. H. Butler, S.Gupta, C. K. A. Mewes, T. Mewes, and P. B. Visscher, IEEE Trans. Magn. 46, 1873 (2010).   DOI   ScienceOn
8 K. W. Cheng, C. Yu, L. K. Lin, Y. D. Yao, Y. Liou, J. H.Huang, and S. F. Lee, Appl. Phys. Lett. 96, 093110 (2010).   DOI   ScienceOn
9 S. Matsunaga, J. Hayakawa, S. Ikeda, K. Miura, H. Hasegawa,T. Endoh, H. Ohno, and T. Hanyu, Appl. Phys. Express 1, 091301 (2008).   DOI
10 H. W. Joo, J. H. An, M. S. Lee, S. D. Choi, S. W. Kim, S. S.Lee, and D. G. Hwang, J. Appl. Phys. 99, 08R504 (2006).   DOI
11 F. Garcia, G. Casali, S. Auffret, B. Rodmacq, and B. Dieny, J. Appl. Phys. 91, 6905(2002).   DOI   ScienceOn