Browse > Article
http://dx.doi.org/10.4283/JMAG.2017.22.2.188

The Relation of Crystallite Size and Ni2+ Content to Ferromagnetic Resonance Properties of Nano Nickel Ferrites  

Lafta, Sadeq H. (Applied Science Department, University of Technology (UOT))
Publication Information
Abstract
The ferromagnetic resonance and other magnetic properties dependence on $Ni^{2+}/Fe^{3+}$ ratio and crystallite size were investigated for nano nickel ferrite ($NiFe_2O_4$). The crystallite size was controlled by controlling the nickel content in the starting material solution. The XRD and TEM were utilized to measure the crystallite size through Scherrer formula and particle size respectively. The most frequent particle sizes were lower than crystallite size, which ranged from 16.5 to 44.65 nm. The general behavior of M-H loop shapes and parameters showed superparamagnetic one. The saturation magnetization had a maximum value at $Ni^{2+}/Fe^{3+}$ molar ratio equal to 0.186. The FMR signals showed, generally, broad linewidths, where the maximum width and minimum resonance field were for the sample of the lowest crystalline size. Furthermore, FMR resonance field shows linear dependence on crystalline size. The fitting relation was estimated to express this linear dependency on the base of behavior coincidence between particle size and the inverse of saturation magnetization. The given interpretations to understand the intercept and the slope meanings of the fitted relation were based on Larmor equation, and inhomogeneous in the anisotropy constant.
Keywords
ferromagnetic resonance; resonance field; crystallite size; Nano Ni-ferrite; FMR linewidth;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. L. Xie, M. Han, L. Chen, R. Kuang, and L. Deng, J. Magn. Magn. Mater. 314, 37 (2007).   DOI
2 C. Y. Tsay, C. Y. Liu, K. S. Liu, I. N. Lin, L. J. Hu, and T.-S. Yeh, J. Magn. Magn. Mater. 239, 490 (2002).   DOI
3 R. D. Sanchez, C. A. Ramos, J. Rivas, P. Vaqueiro, and M. A. Lopez-Quintela, Physica B 354, 104 (2004).   DOI
4 V. G. Harris, IEEE Trans. Magn. 48, 1075 (2012).   DOI
5 F. Gazeau, J. C. Bacri, F. Gendron, R. Perzynski, Y. L. Raikher, V. I. Stepanov, and E. Dubois, J. Magn. Magn. Mater. 186, 175 (1998).   DOI
6 M. Noginov, N. Noginova, O. Amponsah, R. Bah, R. Rakhimov, and V. A. Atsarkin, J. Magn. Magn. Mater. 320, 2228 (2008).   DOI
7 F. Gazeau, J. C. Bacri, F. Gendron, R. Perzynski, Y. L. Raikher, V. I. Stepanov, and E. Dubois, J. Magn. Magn. Mater. 202, 535 (1999).   DOI
8 J. M. D. Coey, Magentism and Magnetic Material, Cambridge University press, New York (2010).
9 R. Valenzuela, F. Herbst, and S. Ammar, J. Magn. Magn. Mater. 324, 3398 (2012).   DOI
10 I. Edelman, E. Petrakovskaja, D. Petrov, S. Zharkov, R. Khaibullin, V. Nuzhdin, and A. Stepanov, Appl. Magn. Res. 40, 363 (2011).   DOI
11 A. F. Lehlooha, S. H. Mahmooda, and J. M. Williamsb, Physica B 321, 159 (2002).   DOI
12 S. Oyarzún, A. Tamion, F. Tournus, V. Dupuis, and M. Hillenkamp, Sci. Rep. 5, 14749 (2015).   DOI
13 A. Monshi, M. R. Foroughi, and M. R. Monshi, W. J. Nano Sci. Eng. 2, 154 (2012).   DOI
14 Emad K. Al-Shakarchi, Sadeq H. Lafta, Ali M. Musa, M. Farle, and R. Salikhov, J. Supercond. Novel Magn. 29, 923 (2016).   DOI
15 A. Patterson, Phys. Rev. 56, 978 (1939).   DOI
16 H. Wang, J. Xie, K. Yan, and M. Duan, J. Mater. Sci. Technol. 27, 153 (2011).   DOI
17 S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller, Chem. Rev. 108, 2064 (2008).   DOI
18 M. A. Dar, J. Shah, W. A. Siddiqui, and R. K. Kotnala, Appl. Nanosci. 4, 675 (2014).   DOI
19 Ka. Nejati and R. Zabihi, Chem. Cent. J. 6, 23 (2012).
20 I. Zalite, G. Heidemane, M. Kodols, J. Grabis, and M. Maiorov, Mat. Sci. (MEDZIAGOTYRA) 18, 1392 (2012).
21 M. Zhang, Z. Zhenfa, Q. Liu, P. Zhang, X. Tang, J. Yang, X. Zhu, Y. Sun, and J. Dai, Adv. Mater. Sci. Eng. 2013, 1155 (2013).
22 M. Lakshmi, K. V. Kumar, and K. Thyagarajan, Adv. Nanopart. 5, 103 (2016).   DOI
23 X. Lasheras, M. Insausti, I. Gil de Muro, E. Garaio, F. Plazaola, M. Moros, L. De Matteis, J. M. de la Fuente, and L. Lezama, J. Phys. Chem. C 120, 3492 (2012).
24 B. S. Yoo, Y. G. Chae, Y. M. Kwon, D. H. Kim, B. W. Lee, and C. Liu, J. Magn. 18, 230 (2013).   DOI
25 X. He, W. Zhong, C. T. Au, and Y. D. He, Nanoscale Res. Lett. 8, 446 (2013).   DOI
26 R. D. Sanchez, J. Rivas, P. Vaqueiro, M. A. Lopez-Quintela, and D. Caeirob, J. Magn. Magn. Mater. 247, 92 (2002).   DOI
27 M. Pardavi and Horvath, J. Magn. Magn. Mater. 215-216, 171 (2001).
28 M. Han, Ch. R. Vestal, and Z. J. Zhang, J. Phys. Chem. B 108, 583 (2004).   DOI
29 F. X. Qin and H. X. Peng, Prog. Mater. Sci. 58, 183 (2013).   DOI
30 D. Carta, M. F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, and A. Corrias, J. Phys. Chem. C 113, 8606 (2009).   DOI
31 H. Montiel, G. Alvarez, I. Betancourt, R. Zamorano, and R. Valenzuela, Physica B 384, 297 (2006).   DOI
32 G. Alvarez, H. Montiel, D. Cos, A. Garcia-Arribas, R. Zamorano, J. M. Barandiarán, and R. Valenzuela, J. Non-Cryst. Solids 354, 5195 (2008).   DOI
33 G. Alvarez, H. Montiel, J. F. Barron, M. P. Gutierrez, and R. Zamorano, J. Magn. Magn. Mater. 322, 348 (2010).   DOI
34 H. Song, S. Mulley, N. Coussens, P. Dhagat, A. Jander, and A. Yokochi, J. Appl. Phys. 111, 07E348 (2012).   DOI
35 E. Schlomann, J. Phys. Chem. Solids 6, 257 (1958).   DOI
36 R. Biasi and T. Devezas, J. Appl. Phys. 49, 2466 (1978).   DOI
37 R. Valenzuela, Electromagnetic Waves Capter 18, ISBN 978-953-307-304-0, InTech (2011), DOI:10.5772/16508.   DOI
38 J. V. I. Timonen, R. H. A. Ras, O. Ikkala, M. Oksanen, E. Seppala, K. Chalapat, J. Li, and G. S. Paraoanu, Trends in nanophysics: Theory, experiment, technology (Engineering Materials Series), Springer-Verlag, Berlin (2010) pp. 257-285.
39 C. J. Oates, F. Y. Ogrin, S. L. Lee, P. C. Riedi, and G. M. Smith, and T. Thomson, J. Appl. Phys. 91, 1417 (2002).   DOI
40 L. Kumar and M. Kar, J. Magn. Magn. Mater. 323, 2042 (2011).   DOI
41 A. H. Morrish, The Physical Principles of Magnetism, John Wiley & Sons, New York (1965).
42 R. Valenzuela, Novel Applications of Ferrites, Phys. Res. Int. ID 591839 (2012).
43 H. Yang, Y. Li, M. Zeng, W. Cao, E. B. William, and Y. Ronghai, Sci. Rep. 6, 20427 (2016).   DOI
44 N. Pachauri, PhD Dissertation Alabama University, Alabama (2014).