• 제목/요약/키워드: ferroelectric materials

검색결과 527건 처리시간 0.023초

ITO박막/세라믹유전체 구조의 이동통신 주파수대역용 박형 전파흡수체의 설계 및 제조 (Design and Fabrication of Thin Microwave Absorbers of ITO/Dielectric Structures Used for Mobile Telecommunication Frequency Bands)

  • 윤여춘;김성수
    • 한국재료학회지
    • /
    • 제13권4호
    • /
    • pp.259-265
    • /
    • 2003
  • For the aim of thin microwave absorbers used in mobile telecommunication frequency band, this study proposed a high permittivity dielectrics(λ/4 spacer) coated with ITO thin films of 377 $\Omega$/sq(impedance transformer). High frequency dielectric properties of ferroelectric ceramics, electrical properties of ITO thin films and microwave absorbing properties of ITO/dielectrics were investigated. Ferroelectric materials including $BaTiO_3$(BT), 0.9Pb($Mg_{1}$3/Nb$_{2}$3/)$O_3$-0.1 $PbTiO_3$(PMN-PT), 0.8 Pb (Mg$_{1}$3/$Nb_{2}$3/)$O_3$-0.2 Pb($Zn_{1}$3$_Nb{2}$3/)$O_3$(PMN-PZN) were prepared by ceramic processing for high permittivity dielectrics,. The ferroelectric materials show high dielectric constant and dielectric loss in the microwave frequency range. The microwave absorbance (at 2 ㎓) of BT, 0.9PMN-0.1PT, and 0.8PMN-0.2PZN were found to be 60%(at a thickness of 3.5 mm), 20% (2.5 mm), and 30% (2.5 mm), respectively. By coating the ITO thin films on the ferroelectric substrates with λ/4 thickness, the microwave absorbance is greatly improved. Particularly, when the surface resistance of ITO films is closed of 377 $\Omega$/sq, the reflection loss is reduced to -20 ㏈(99% absorbance). This is attributed to the wave impedance matching controlled by ITO thin films at a given thickness of high permittivity dielectrics of λ/4 (3.5 mm for BT, 2.5 mm for PMN-PT and PMN-PZN at 2 ㎓). It is, therefore, successfully proposed that the ITO/ferroelectric materials with controlled surface resistance and high dielectric constant can be useful as a thin microwave absorbers in mobile telecommunication frequency band.

강유전체 고분자의 음의 압전 물성 및 상공존경계(MPB)에 대한 고찰 (Perspective on Ferroelectric Polymers Presenting Negative Longitudinal Piezoelectric Coefficient and Morphotropic Phase Boundary)

  • 임성빈;부상돈;정창규
    • 한국전기전자재료학회논문지
    • /
    • 제35권6호
    • /
    • pp.523-546
    • /
    • 2022
  • Morphotropic phase boundary (MPB), which is a special boundary that separates two or multiple different phases in the phase diagram of some ferroelectric ceramics, is an important concept in identifying physics that includes piezoelectric responses. MPB, which had not been discovered in organic materials until recently, was discovered in poly(vinylidene fluoride-co-trifluoroethylene (P(VDF-TrFE)), resulting from a molecular approach. The piezoelectric coefficient of P(VDF-TrFE) in this MPB region was achieved up to -63.5 pC N-1, which is about two times as large as the conventional value of -30 pC N-1 of P(VDF-TrFE). An order-disorder arrangement greatly affects the rise of the piezoelectric effect and the ferroelectric, paraelectric and relaxor ferroelectric of P(VDF-TrFE), so the arrangement and shape of the polymer chain is important. In this review, we investigate the origin of negative longitudinal piezoelectric coefficients of piezoelectric polymers, which is definitely opposite to those of common piezoelectric ceramics. In addition to the mainly discussed issue about MPB behaviors of ferroelectric polymers, we also introduce the consideration about polymer chirality resulting in relaxor ferroelectric properties. When the physics of ferroelectric polymers is unveiled, we can improve the piezoelectric and pyroelectric properties of ferroelectric polymers and contribute to the development of next-generation sensor, energy, transducer and actuator applications.

Device characterization and Fabrication Issues for Ferroelectric Gate Field Effect Transistor Device

  • Yu, Byoung-Gon;You, In-Kyu;Lee, Won-Jae;Ryu, Sang-Ouk;Kim, Kwi-Dong;Yoon, Sung-Min;Cho, Seong-Mok;Lee, Nam-Yeal;Shin, Woong-Chul
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권3호
    • /
    • pp.213-225
    • /
    • 2002
  • Metal-Ferroelectric- Insulator- Silicon (MFIS) structured field effect transistor (FET) device was fabricated and characterized. Important issues to realize ferroelectric gate field effect transistor device were summarized in three sections. The choice of interlayer dielectric was made in the consideration of device functionality and chemical reaction between ferroelectric materials and silicon surface during fabrication process. Also, various ferroelectric thin film materials were taken into account to meet desired memory window and process compatibility. Finally, MFIS structured FET device was fabricated and important characteristics were discussed. For feasible integration of current device as random access memory array cell address schemes were also suggested.

Suppression of Abnormal Grain Growth in Barium Titanate by Atmosphere Control

  • Lee, Byoung-Ki;Chung, Sung-Yoon;Jung, Yang-Il;Suk-Joong L. Kang
    • 한국분말재료학회지
    • /
    • 제8권2호
    • /
    • pp.131-135
    • /
    • 2001
  • The ferroelectric properties of barium titanate strongly depend on its microstructure, in particular, grain size and distribution. During sintering, $BaTiO_3$ usually exhibits abnormal grain growth, which deteriorates considerably the ferroelectric properties. A typical technique to suppress the abnormal grain growth is the addition of dopants. Dopant addition, however, affects the ferroelectric properties and thus limits the application of $BaTiO_3$. Here, we report a simple but novel technique to prevent the abnormal grain growth of $BaTiO_3$ and to overcome the limitation of dopant use. The technique consists of stepwise sintering in a reducing atmosphere and in an oxidizing atmosphere. The materials prepared by the present technique exhibit uniform grain size and high dielectric properties. The technique should provide opportunities of having $BaTiO_3$-based materials with superior ferroelectric properties.

  • PDF

Dielectric, Ferroelectric, Energy Storage, and Pyroelectric Properties of Mn-Doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 Anti-Ferroelectric Ceramics

  • Kumar, Ajeet;Yoon, Jang Yuel;Thakre, Atul;Peddigari, Mahesh;Jeong, Dae-Yong;Kong, Young-Min;Ryu, Jungho
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.412-420
    • /
    • 2019
  • In this study, the dielectric and polarization properties of manganese (Mn% = 0.0, 0.1, 0.2, 0.5) doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 (PLZT 7/82/18) anti-ferroelectric ceramics were studied for energy storage capacitor and pyroelectric applications. A systematic investigation demonstrated that the electric properties of PLZT 7/82/18 ceramics are affected significantly by the Mn-doping content. A maximum dielectric constant of ~ 2,128 at 1 kHz was found for 0.1% Mn-doped PLZT ceramics with a low dielectric loss of 0.018. The bipolar polarization versus electric field (P-E) hysteresis loops were traced for all compositions showing a typical anti-ferroelectric nature. The breakdown field was found to decrease with Mn-doping. The energy storage density and efficiency were found to be 460 J/㎤ and ~ 63%, respectively, for 0.2% Mn-doped PLZT ceramics. The pyroelectric coefficient of PLZT ceramics shows an increase based on the amount of Mn-doping.

하부전극 산소 열처리를 통한 강유전체 터널접합 구조 메모리 소자의 전기저항 변화 특성 분석 (Variations in Tunnel Electroresistance for Ferroelectric Tunnel Junctions Using Atomic Layer Deposited Al doped HfO2 Thin Films)

  • 배수현;윤소정;민대홍;윤성민
    • 한국전기전자재료학회논문지
    • /
    • 제33권6호
    • /
    • pp.433-438
    • /
    • 2020
  • To enhance the tunneling electroresistance (TER) ratio of a ferroelectric tunnel junction (FTJ) device using Al-doped HfO2 thin films, a thin insulating layer was prepared on a TiN bottom electrode, for which TiN was preliminarily treated at various temperatures in O2 ambient. The composition and thickness of the inserted insulating layer were optimized at 600℃ and 50 Torr, and the FTJ showed a high TER ratio of 430. During the heat treatments, a titanium oxide layer formed on the surface of TiN, that suppressed oxygen vacancy generation in the ferroelectric thin film. It was found that the fabricated FTJ device exhibits two distinct resistance states with higher tunneling currents by properly heat-treating the TiN bottom electrode of the HfO2-based FTJ devices in O2 ambient.

Crystal growth of BT-based ferroelectric films for nonvolatile memories

  • Yang, B.;Park, N.J.
    • 한국결정성장학회지
    • /
    • 제14권4호
    • /
    • pp.151-154
    • /
    • 2004
  • Issues of ferroelectric high-density memories (>64 Mb) indispensable for upcoming ubiquitous era have been on the cell integration less than $0.1\;\mu\textrm{m}^2$ and reliabilities. Thus nanoscale control of microstructures of ferroelectric films with large switching polarization has been one of the issues to obtain the uniform electrical properties for realization of high-density memories. In this study the grain orientations and distributions of BT-based films by spin-on coatings were examined by FEG-SEM/EBSD. Ferroelectric domain characteristics by PFM were also performed to study the dependence of reliabilities on the grain orientations and distributions. It is believed that understandings of the nucleation and growth mechanisms of the a- or b-axis oriented films during the thermal processes such as RTA and furnace annealing affecting on grain orientation and uniformity could be possible based on our experimental results.

BLT 박막의 CMP 공정시 압력에 따른 Surface Morphology 및 Defects 특성 (Characteristics of Surface Morphology and Defects by Polishing Pressure in CMP of BLT Films)

  • 정판검;이우선
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.101-102
    • /
    • 2006
  • PZT thin films, which are the representative ferroelectric materials in ferroelectric random access memory (FRAM), have some serious problem such as the imprint, retention and fatigue which ferroelectric properties are degraded by repetitive polarization. BL T thin film capacitors were fabricated by plasma etching, however, the plasma etching of BLT thin film was known to be very difficult. In our previous study, the ferroelectric materials such as PZT and BLT were patterned by chemical mechanical polishing (CMP) using damascene process to top electrode/ferroelectric material/bottom electrode. It is also possible to pattern the BLT thin film capacitors by CMP, however, the CMP damage was not considered in the experiments. The properties of BLT thin films were changed by the change of polishing pressure although the removal rate was directly proportional to the polishing pressure in CMP process.

  • PDF

Effects of Asymmetric Distribution of Charged Defects on the Hysteresis Curves of Ferroelectric Capacitors

  • Lee Kang-Woon;Kim Yong-Il;Lee Won-Jong
    • 마이크로전자및패키징학회지
    • /
    • 제12권3호
    • /
    • pp.219-226
    • /
    • 2005
  • When a ferroelectric film has an inhomogeneous distribution of charged defects, a voltage shift in the polarization curve is induced by the internal field generated in the film. The direction and the magnitude of voltage shift in the P-V hysteresis curves obtained by the Sawyer-Tower method are different from those obtained by the virtual ground method. In this study, the asymmetric behavior in the P-V hysteresis curves of inhomogeneous ferroelectric films was investigated with a physical model and the polarization curves obtained by the Sawyer-Tower and the virtual ground methods are compared.

  • PDF

분극에 의한 SBN30 박막의 강유전특성 변화 (Poling-dependent Ferroelectric Properties of SBN30 Thin Films)

  • 장재훈;이동근;이희영
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 추계학술대회 논문집 Vol.15
    • /
    • pp.309-312
    • /
    • 2002
  • Ferroelectric $Sr_{0.3}Ba_{0.7}Nb_{2}O_{6}$ (SBN30) thin films were deposited on Pt/Ti/$SiO_{2}$/Si(100) substrates by ion beam sputtering. During annealing treatment at $750^{\circ}C$, poling was attempted by applying dc voltage bias across polished surfaces. Phase relation, microstructure and crystallization behavior were examined using XRD and FE-SEM. Ferroelectric hysteresis characteristics were also determined where both remanent polarization and coercive values decreased with the increase of bias voltage. The measured remanent polarization and coercive field values at 5 V and 10 V bias were $36{\mu}C/cm^2$, $10{\mu}C/cm^2$ and 100kV /cm, 80kV /cm, respectively.

  • PDF