Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.6.433

Variations in Tunnel Electroresistance for Ferroelectric Tunnel Junctions Using Atomic Layer Deposited Al doped HfO2 Thin Films  

Bae, Soo Hyun (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University)
Yoon, So-Jung (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University)
Min, Dae-Hong (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University)
Yoon, Sung-Min (Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.6, 2020 , pp. 433-438 More about this Journal
Abstract
To enhance the tunneling electroresistance (TER) ratio of a ferroelectric tunnel junction (FTJ) device using Al-doped HfO2 thin films, a thin insulating layer was prepared on a TiN bottom electrode, for which TiN was preliminarily treated at various temperatures in O2 ambient. The composition and thickness of the inserted insulating layer were optimized at 600℃ and 50 Torr, and the FTJ showed a high TER ratio of 430. During the heat treatments, a titanium oxide layer formed on the surface of TiN, that suppressed oxygen vacancy generation in the ferroelectric thin film. It was found that the fabricated FTJ device exhibits two distinct resistance states with higher tunneling currents by properly heat-treating the TiN bottom electrode of the HfO2-based FTJ devices in O2 ambient.
Keywords
Ferroelectric tunnel junction; $HfO_2$; Tunneling electroresistance; Ferroelectric memory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Dahle, R. Gustus, W. Viol, and W. Maus-Friedrichs, Plasma Chem. Plasma Process., 32, 1109 (2012). [DOI: https://doi.org/10.1007/s11090-012-9392-x]   DOI
2 J. F. Scott and C. A. Paz de Araujo, Science, 246, 1400 (1989). [DOI: https://doi.org/10.1126/science.246.4936.1400]   DOI
3 T. Kim and S. Jeon, IEEE Trans. Electron Devices, 65, 1771 (2018). [DOI: https://doi.org/10.1109/TED.2018.2816968]   DOI
4 M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, and C. S. Hwang, Adv. Energy Mater., 4, 140061 (2014). [DOI: https://doi.org/10.1002/aenm.201400610]
5 J. Muller, T. S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, and T. Mikolajick, Nano Lett., 12, 4318 (2012). [DOI: https://doi.org/10.1021/nl302049k]   DOI
6 P. Polakowski, S. Riedel, W. Weinreich, M. Rudolf, J. Sundqvist, K. Seidel, and J. Muller, Proc. 2014 IEEE 6th International Memory Workshop (IMW) (IEEE, Taipei, Taiwan, 2014) p. 1. [DOI: https://doi.org/10.1109/IMW.2014.6849367]
7 A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, Nat. Nanotechnol., 7, 101 (2012). [DOI: https://doi.org/10.1038/nnano.2011.213]   DOI
8 M. Y. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal, Phys. Rev. Lett., 94, 246802 (2005). [DOI: https://doi.org/10.1103/PhysRevLett.94.246802]   DOI
9 H. Kohlstedt, N. A. Pertsev, J. R. Contreras, and R. Waser, Phys. Rev. B, 72, 125341 (2005). [DOI: https://doi.org/10.1103/PhysRevB.72.125341]   DOI
10 L. Esaki, R. B. Lailbowitz, and P. J. Stiles, IBM Tech. Discl. Bull., 13, 2161 (1971).
11 D. Pantel and M. Alexe, Phys. Rev. B, 82, 134105 (2010). [DOI: https://doi.org/10.1103/PhysRevB.82.134105]   DOI
12 M. Kobayashi, Y. Tagawa, F. Mo, T. Saraya, and T. Hiramoto, IEEE J. Electron Devices Soc., 7, 134 (2019). [DOI: https://doi.org/10.1109/JEDS.2018.2885932]   DOI