Browse > Article
http://dx.doi.org/10.4191/kcers.2019.56.4.10

Dielectric, Ferroelectric, Energy Storage, and Pyroelectric Properties of Mn-Doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 Anti-Ferroelectric Ceramics  

Kumar, Ajeet (School of Materials Science and Engineering, Yeungnam University)
Yoon, Jang Yuel (School of Materials Science and Engineering, Yeungnam University)
Thakre, Atul (School of Materials Science and Engineering, Yeungnam University)
Peddigari, Mahesh (Functional Ceramics Group, Korea Institute of Material Science)
Jeong, Dae-Yong (Department of Materials Science and Engineering, Inha University)
Kong, Young-Min (School of Materials Science and Engineering, University of Ulsan)
Ryu, Jungho (School of Materials Science and Engineering, Yeungnam University)
Publication Information
Abstract
In this study, the dielectric and polarization properties of manganese (Mn% = 0.0, 0.1, 0.2, 0.5) doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 (PLZT 7/82/18) anti-ferroelectric ceramics were studied for energy storage capacitor and pyroelectric applications. A systematic investigation demonstrated that the electric properties of PLZT 7/82/18 ceramics are affected significantly by the Mn-doping content. A maximum dielectric constant of ~ 2,128 at 1 kHz was found for 0.1% Mn-doped PLZT ceramics with a low dielectric loss of 0.018. The bipolar polarization versus electric field (P-E) hysteresis loops were traced for all compositions showing a typical anti-ferroelectric nature. The breakdown field was found to decrease with Mn-doping. The energy storage density and efficiency were found to be 460 J/㎤ and ~ 63%, respectively, for 0.2% Mn-doped PLZT ceramics. The pyroelectric coefficient of PLZT ceramics shows an increase based on the amount of Mn-doping.
Keywords
PLZT; Ferroelectric properties; Anti-ferroelectric; Energy storage; Pyroelectricity;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 A. Thakre, A. Kumar, H.-C. Song, D.-Y. Jeong, and J. Ryu, "Pyroelectric Energy Conversion and its Applications-Flexible Energy Harvesters and Sensors," Sensors, 19 [9] 2170 (2019).
2 J. Kim, J.-H. Ha, J. Lee, I.-H. Song, J. Kim, J.-H. Ha, J. Lee, and I.-H. Song, "The Effect of $MnO_2$ Content on the Permeability and Electrical Resistance of Porous Alumina-based Ceramics," J. Korean Ceram. Soc., 54 [4] 331-39 (2017).   DOI
3 A. Kumar, S. H. Kim, M. Peddigari, D.-H. Jeong, G.-T. Hwang, and J. Ryu, "High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of $(Pb_{0.89}La_{0.11})-(Zr_{0.70}Ti_{0.30})_{0.9725}O_3$ Relaxor Ferroelectric Ceramics," Electron. Mater. Lett., 15 [3] 323-30 (2019).   DOI
4 A. Kumar, K. C. J. Raju, and A. R. James, "Diffuse Phase Transition in Mechanically Activated $(Pb_{1-x}La_x)(Zr_{0.60}Ti_{0.40})O_3$ Electro-Ceramics," J. Mater. Sci. Mater. Electron., 28 [18] 13928-36 (2017).   DOI
5 T. M. Kamel, F. X. N. M. Kools, and G. de With, "Poling of Soft Piezoceramic PZT," J. Eur. Ceram. Soc., 27 2471-79 (2007).   DOI
6 Y. Tan, J. Zhang, Y. Wu, C. Wang, V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, and H. Yan, "Unfolding Grain Size Effects in Barium Titanate Ferroelectric Ceramics," Sci. Rep., 5 9953 (2015).   DOI
7 A. Kumar, S. Reddy Emani, V. V. Bhanu Prasad, K. C. James Raju, and A. R. James, "Microwave Sintering of Fine Grained PLZT 8/60/40 Ceramics Prepared via High Energy Mechanical Milling," J. Eur. Ceram. Soc., 36 [10] 2505-11 (2016).   DOI
8 A. Kumar, V. V. B. Prasad, K. C. J. Raju, and A. R. James, "Lanthanum Induced Diffuse Phase Transition in High Energy Mechanochemically Processed and Poled PLZT 8/60/40 Ceramics," J. Alloys Compd., 654 95-102 (2016).   DOI
9 L. Jin, F. Li, and S. Zhang, "Decoding the Fingerprint of Ferroelectric Loops: Comprehension of the Material Properties and Structures," J. Am. Ceram. Soc., 97 [1] 1-27 (2014).   DOI
10 A. Kumar, V. V. B. Prasad, K. C. J. Raju, R. Sarkar, P. Ghosal, and A. R. James, "Effect of Lanthanum Substitution on the Structural, Dielectric, Ferroelectric and Piezoelectric Properties of Mechanically Activated PZT Electroceramics," Def. Sci. J., 66 [4] 360-67 (2016).   DOI
11 E. Chandrakala, J. Paul Praveen, A. Kumar, A. R. James, and D. Das, "Strain-Induced Structural Phase Transition and its Effect on Piezoelectric Properties of (BZT-BCT)-($CeO_2$) Ceramics," J. Am. Ceram. Soc., 99 [11] 3659-69 (2016).   DOI
12 D. Damjanovic, "Ferroelectric, Dielectric and Piezoelectric Properties of Ferroelectric Thin Films and Ceramics," Rep. Prog. Phys., 61 [9] 1267-324 (1998).   DOI
13 Z. Liu, X. Dong, Y. Liu, F. Cao, and G. Wang, "Electric Field Tunable Thermal Stability of Energy Storage Properties of PLZST Antiferroelectric Ceramics," J. Am. Ceram. Soc., 100 [6] 2382-86 (2017).   DOI
14 M. Peddigari, H. Palneedi, G.-T. Hwang, and J. Ryu, "Linear and Nonlinear Dielectric Ceramics for High-Power Energy Storage Capacitor Applications," J. Korean Ceram. Soc., 56 [1] 1-23 (2019).   DOI
15 H. J. Goldsmid, "Principles of Thermoelectric Devices," Br. J. Appl. Phys., 11 [6] 209-17 (1960).   DOI
16 D. Lingam, A. R. Parikh, J. Huang, A. Jain, and M. Minary-Jolandan, "Nano/Microscale Pyroelectric Energy Harvesting: Challenges and Opportunities," Int. J. Smart Nano Mater., 4 229-45 (2013).   DOI
17 H. Fan, B. Peng, and Q. Zhang, "Preparation and Field-Induced Electrical Properties of Perovskite Relaxor Ferroelectrics," Trans. Electr. Electron. Mater., 16 [1] 1-4 (2015).   DOI
18 M. Peddigari, H. Palneedi, G.-T. Hwang, K. W. Lim, G.-Y. Kim, D.-Y. Jeong, and J. Ryu, "Boosting the Recoverable Energy Density of Lead-free Ferroelectric Ceramic Thick Films through Artificially Induced Quasi-Relaxor Behavior," ACS Appl. Mater. Interfaces, 10 [24] 20720-27 (2018).   DOI
19 Q. Li, F.-Z. Yao, Y. Liu, G. Zhang, H. Wang, and Q. Wang, "High-Temperature Dielectric Materials for Electrical Energy Storage," Annu. Rev. Mater. Res., 48 219-43 (2018).   DOI
20 Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M. T. Lanagan, and H. Liu, "Homogeneous/Inhomogeneous-Structured Dielectrics and their Energy-Storage Performances," Adv. Mater., 29 [20] 1601727 (2017).   DOI
21 C.-K. Park, S. Lee, J.-H. Lim, J. Ryu, D. Choi, and D.-Y. Jeong, "Nano-Size Grains and High Density of 65PMN-35PT Thick Film for High Energy Storage Capacitor," Ceram. Int., 44 [16] 20111-14 (2018).   DOI
22 Z. Lin, Y. Chen, Z. Liu, G. Wang, D. Remiens, and X. Dong, "Large Energy Storage Density, Low Energy Loss and Highly Stable $(Pb_{0.97}La_{0.02})(Zr_{0.66}Sn_{0.23}Ti_{0.11})O_3$ Antiferroelectric Thin-Film Capacitors," J. Eur. Ceram. Soc., 38 [9] 3177-81 (2018).   DOI
23 H. Palneedi, M. Peddigari, G.-T. Hwang, D.-Y. Jeong, and J. Ryu, "High-Performance Dielectric Ceramic Films for Energy Storage Capacitors: Progress and Outlook," Adv. Funct. Mater., 28 [42] 1803665 (2018).   DOI
24 B. Lu, P. Li, Z. Tang, Y. Yao, X. Gao, W. Kleemann, and S.G. Lu, "Large Electrocaloric Effect in Relaxor Ferroelectric and Antiferroelectric Lanthanum Doped Lead Zirconate Titanate Ceramics," Sci. Rep., 7 1-8 (2017).   DOI
25 G. H. Haertling, "Ferroelectric Ceramics: History and Technology," J. Am. Ceram. Soc., 82 [4] 797-818 (1999).   DOI
26 D. Lin, Q. Zheng, K. W. Kwok, C. Xu, and C. Yang, "Dielectric and Piezoelectric Properties of $MnO_2$-doped $K_{0.5}Na_{0.5}Nb_{0.92}Sb_{0.08}O_3$ Lead-free Ceramics," J. Mater. Sci. Mater. Electron., 21 [7] 649-55 (2010).   DOI
27 D. Lin, K. W. Kwok, and H. L. W. Chan, "Piezoelectric and Ferroelectric Properties of $K_xNa_{1-x}NbO_3$ Lead-free Ceramics with $MnO_2$ and CuO Doping," J. Alloys Compd., 461 [1-2] 273-78 (2008).   DOI
28 X. Hao, "A Review on the Dielectric Materials for High Energy-Storage Application," J. Adv. Dielectr., 03 [01] 1330001 (2013).   DOI
29 W. Yang, D. Jin, T. Wang, and J. Cheng, "Effect of Oxide Dopants on the Structure and Electrical Properties of $(Na_{0.5}K_{0.5})NbO_3-LiSbO_3$ Lead-free Piezoelectric Ceramics," Phys. B, 405 [7] 1918-21 (2010).   DOI
30 X. P. Jiang, Y. Chen, K. H. Lam, S. H. Choy, and J. Wang, "Effects of MnO Doping on Properties of $0.97K_{0.5}Na_{0.5}NbO_3-0.03(Bi_{0.5}K_{0.5})TiO_3$ Piezoelectric Ceramics," J. Alloys Compd., 506 [1] 323-26 (2010).   DOI
31 Z. Du, C. Zhao, H.-C. Thong, Z. Zhou, J. Zhou, K. Wang, C. Guan, H. Liu, and J. Fang, "Effect of $MnCO_3$ on the Electrical Properties of PZT-based Piezoceramics Sintered at Low Temperature," J. Alloys Compd., 801 27-32 (2019).   DOI
32 J.-G. Hwang, K.-S. Oh, T.-J. Chung, T.-H. Kim, and Y.-K. Paek, "Low-Temperature Sintering Behavior of Aluminum Nitride Ceramics with Added Copper Oxide or Copper," J. Korean Ceram. Soc., 56 [1] 104-10 (2019).   DOI
33 S. M. Lee, S. H. Lee, C. B. Yoon, H. E. Kim, and K. W. Lee, "Low-Temperature Sintering of $MnO_2$-doped PZTPZN Piezoelectric Ceramics," J. Electroceramics., 18 [3-4] 311-15 (2007).   DOI
34 V. Dimza, A. I. Popov, L. Lace, M. Kundzins, K. Kundzins, M. Antonova, and M. Livins, "Effects of Mn Doping on Dielectric Properties of Ferroelectric Relaxor PLZT Ceramics," Curr. Appl. Phys., 17 [2] 169-73 (2017).   DOI
35 H.-T. Oh, H.-J. Joo, M.-C. Kim, and H.-Y. Lee, "Thickness- Dependent Properties of Undoped and Mn-doped (001) PMN-29PT $[Pb(Mg_{1/3}Nb_{2/3})O_3-29PbTiO_3]$ Single Crystals," J. Korean Ceram. Soc., 55 [3] 290-98 (2018).   DOI
36 H.-T. Oh, H.-J. Joo, M.-C. Kim, and H.-Y. Lee, "Effect of Mn on Dielectric and Piezoelectric Properties of 71PMN- 29PT $[71Pb(Mg_{1/3}Nb_{2/3})O_3-29PbTiO_3]$ Single Crystals and Polycrystalline Ceramics," J. Korean Ceram. Soc., 55 [2] 166-73 (2018).   DOI
37 H.-T. Oh, J.-Y. Lee, and H.-Y. Lee, "Mn-modified PMNPZT $[Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3]$ Single Crystals for High Power Piezoelectric Transducers," J. Korean Ceram. Soc., 54 [2] 150-57 (2017).   DOI
38 Y. Liu, X. Hao, and S. An, "Significant Enhancement of Energy-Storage Performance of $(Pb_{0.91}La_{0.09})(Zr_{0.65}Ti_{0.35})O_3$ Relaxor Ferroelectric Thin Films by Mn Doping," J. Appl. Phys., 114 [17] 174102 (2013).   DOI
39 U. Prah, T. Rojac, M. Wencka, M. Dragomir, A. Bradesko, A. Bencan, R. Sherbondy, G. Brennecka, Z. Kutnjak, B. Malic, and H. Ursic, "Improving the Multicaloric Properties of $Pb(Fe_{0.5}Nb_{0.5})O_3$ by Controlling the Sintering Conditions and Doping with Manganese," J. Eur. Ceram. Soc., 39 [14] 4122-30 (2019).   DOI
40 Q. Du, Y. Tang, X. Huang, F. Wang, X. Zhao, X. Zhuang, W. Shi, J. Zhao, F. Liu, and H. Luo, "Structures and Pyroelectric Properties for [111]-Oriented Mn-doped Rhombohedral 0.36PIN-0.36PMN-0.28PT Crystal," J. Am. Ceram. Soc., Accepted (2019). doi:https://doi.org/10.1111/jace.16600
41 H. Qiao, C. He, F. Zhuo, Z. Wang, X. Li, Y. Liu, and X. Long, "Modulation of Electrocaloric Effect and Nanodomain Structure in Mn-doped $Pb(In_{0.5}Nb_{0.5})O_3-PbTiO_3$ Ceramics," Ceram. Int., 44 [16] 20417-26 (2018).   DOI