• 제목/요약/키워드: ferrite-austenite

검색결과 209건 처리시간 0.03초

페라이트-오스테나이트 2상역 온도에서 미량합금 원소가 첨가된 탄소강의 재결정 거동 (Recrystallization Behavior in the Two-Phase (α+γ) Region of Micro-Alloyed Steels)

  • 이승용;김지연;황병철
    • 한국재료학회지
    • /
    • 제26권11호
    • /
    • pp.583-589
    • /
    • 2016
  • In this study, recrystallization behaviors in the two-phase (${\alpha}+{\gamma}$) region of micro-alloyed steels such as Base, Nb, TiNbV and CAlN were investigated in terms of flow stress, microstructure and associated grain boundary characteristics. The flow stress of all specimens reached peak stress and gradually decreased, which means that recrystallization or recovery of proeutectoid deformed ferrite and recovery or transformation to ferrite of deformed austenite occurred by thermal activation. The precipitation of carbide or nitride via the addition of micro-alloying elements, because it reduced prior austenite grain size upon austenitization, promoted transformation of austenite to ferrite and increased flow stress. The strain-induced precipitation under deformation in the two-phase region, on the other hand, increased the flow stress when the micro-alloying elements were dissolved during austenitization. The recrystallization of the Nb specimen was more effectively retarded than that of the TiNbV specimen during deformation in the two-phase region.

용접 열영향부 미세조직 및 재질 예측 모델링: V. 저합금강의 초기 오스테나이트 결정립크기 및 냉각 속도의 영향을 고려한 용접 열영향부 상변태 모델 (Prediction Model for the Microstructure and Properties in Weld Heat Affected Zone: V. Prediction Model for the Phase Transformation Considering the Influence of Prior Austenite Grain Size and Cooling Rate in Weld HAZ of Low Alloyed Steel)

  • 김상훈;문준오;이윤기;정홍철;이창희
    • Journal of Welding and Joining
    • /
    • 제28권3호
    • /
    • pp.104-113
    • /
    • 2010
  • In this study, to predict the microstructure in weld HAZ of low alloyed steel, prediction model for the phase transformation considering the influence of prior austenite grain size and cooling rate was developed. For this study, six low alloyed steels were designed and the effect of alloying elements was also investigated. In order to develop the prediction model for ferrite transformation, isothermal ferrite transformation behaviors were analyzed by dilatometer system and 'Avrami equation' which was modified to consider the effect of prior austenite grain size. After that, model for ferrite phase transformation during continuous cooling was proposed based on the isothermal ferrite transformation model through applying the 'Additivity rule'. Also, start temperatures of ferrite transformation were predicted by $A_{r3}$ considering the cooling rate. CCT diagram was calculated through this model, these results were in good agreement with the experimental results. After ferrite transformation, bainite transformation was predicted using Esaka model which corresponded most closely to the experimental results among various models. The start temperatures of bainite transformation were determined using K. J. Lee model. Phase fraction of martensite was obtained according to phase fractions of ferrite and bainite.

저탄소 미량합금강의 미세조직에 미치는 고온변형의 효과 (Effects of Austenitization Temperature and Hot Deformation on Microstructure of Microalloyed Low Carbon Steels)

  • 김새암;이상우
    • 열처리공학회지
    • /
    • 제16권2호
    • /
    • pp.83-89
    • /
    • 2003
  • As a research for developing fine-grained high strength low carbon steels, the effects of austenitization temperature and hot deformation on microstructure was investigated in 0.15 wt.% carbon steels with microalloying elements such as Nb and Ti. When the steels were reheated at $1250^{\circ}C$, Nb containing steel showed very coarse austenite grain size of $200{\mu}m$ whereas Nb-Ti steel did fine one of $70{\mu}m$ because Ti carbonitrides could suppress the austenite grain growth. In case of 50% reduction at $850^{\circ}C$, the austenite grains in the Nb steel partially recrystallized while those in the Nb-Ti steel fully recrystallized probably due to finer prior austenite grains.For the Nb-Ti steel, ferrite grain size was not sensitively changed with austenitization temperature and compression strain and, severe deformation of 80% reduction was not essentially necessary to refine ferrite grains to about $3{\mu}m$ which could be obtained through lighter deformation of 40% reduction.

오스테나이트계 스테인리스강 용접부의 금속학적 현상에 관한 연구(2) - STS 304 용접부 조직특성 및 고온균열 감수성에 미치는 질소의 영향 - (A Study of Weld Fusion Zone Phenomena in Austenitic Stainless Steels(2) - Effects of Nitrogen on Microstructural Evolution and Hot Cracking Susceptibility GTA Welds in STS 304 -)

  • 이종섭;김숙환
    • Journal of Welding and Joining
    • /
    • 제18권1호
    • /
    • pp.59-69
    • /
    • 2000
  • The purpose of the present study was to investigate weld metallurgical phenomena such as primary solidification mode, microstructural evolution and hot cracking susceptibility in nitrogen-bearing austenitic stainless steel GTA welds. Eight experimental heats varying nitrogen content from 0.007 to 0.23 wt.% were used in this study. Autogenous GTA welding was performed on weld coupons and the primary solidification mode and their microstructural characteristics were investigated from the fusion welds. Varestraint test was employed to evaluate the solidification cracking susceptibility of the heats and TCL(Total Crack Length) was used as cracking susceptibility index. The solidification mode shifted from primary ferrite to primary austenite with an increase in nitrogen content. Retained delta ferrite exhibited a variety of morphology as nitrogen content varied. The weld fusion zone exhibited duplex structure(austenite+ferrite) at nitrogen contents less than 0.10 wt.% but fully austenitic structure at nitrogen contents more than 0.20 wt.%. The weld fusion zone in alloys with about 0.15 wt.% nitrogen experienced primary austenite + primary ferrite solidification (mode AF) and contained delta ferrite less than 1% at room temperature. Regarding to solidification cracking susceptibility, the welds with fully austenitic structure exhibited high cracking susceptibility while those with duplex structure low susceptibility. The cracking susceptibility increased slowly with an increase in nitrogen content up to 0.20 wt.% but sharply as nitrogen content exceeded 0.20 wt.%, which was attributed to solidification mode shift fro primary ferrite to primary austenite single phase solidification.

  • PDF

변태유기소성강의 소성변형에 미치는 2차상의 형상과 고용탄소의 영향 (Effects of the Morphology of Secondary Phases and Carbon Content on the Plastic Deformation of TRIP steel)

  • 홍승갑
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.116-119
    • /
    • 1999
  • The effects of secondary phase morphology and carbon content on the plastic deformation of 0.2C-1.5Si-1.5mn TRIP(TRansformed Induced Plasticity) steel have been investigated at various annealing and bainitic transformation temperatures. The morphology of ferrite and secondary phases was controlled by the annealing temperature and the distribution of secondary phase was controlled by the bainitic transformation temperature. The secondary phase contributed to elongation and/or UTS depending on the ferrite morphology which determined deformation mode simple elongation or rotation of secondary phase along the tensile direction In case of the sample containing the granular type retained austenite the elongation was improved as carbon stabilized the austenite phase. If the film-shape retained austenite in acicular ferrite was dominant however UTS was enhanced as the transformed martensite was hardened by carbon.

  • PDF

1N 염산 용액에서 Fe-Cr-Ni-W 합금의 양분극 거동에 관한 연구 (The Anodicc PolarizationBehavior of Fe-Cr-Ni-W alloy in 1N HCI Solution)

  • 윤재돈;강성군
    • 한국표면공학회지
    • /
    • 제21권4호
    • /
    • pp.176-182
    • /
    • 1988
  • Effects of Cr, Ni and W on the anodic polarization behavior were investigated for Fe-Cr-Ni-W alloys in deaerated 1N HCI solution. Surface films formed on the polarization were analysed using AES, SEM and EDAX. A higerconcentration of tungten was found in the surface oxide film compared to the matrix. It played an importanet role on incresing the stability of the passive film. The presence of an adequate amount of Cr was essential to increase the pitting resistance of the alloys in acid chloride media. Under 12 wt%cr,alloys containing 6wt%W did not exhidit any passivity at all. The main role of Ni was to control the microstructure rather than to modify the corrosion resistance. In 23 cr-14Ni-^W alloy, the duplex microstructure of ferrite($\delta$-phase) in an austenic matrix was developed. The reson why proferred pitting appeared in austenite and ferrite/austenite interface was that ferrite had more amount of Cr and W than austenite.

  • PDF

오스테나이트 결정립 크기를 고려한 CGHAZ에서의 상변태 거동 예측 (Modeling of PhaseTransformation Kinetics in the CGHAZ Considering Prior Austenite Grain Size)

  • 이찬우;엄상호;이경종;이창희
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.55-62
    • /
    • 2000
  • A metallurgical model for the phase transformation kinetics at Coarsened Grain Heat Affected Zone(CGHAZ) on the basis of Johnson-Mehl-Avrami equation(JMA equation) was proposed. In this model, the effect of prior austenite grain size on the transformation and the morphological changes of ferrite were considered. Isothermal dilatometer tests were performed to determine the effect of prior austenite grain size (AGS) on the austenite decomposition to ferrite and pearlite in a plain carbon steel. By comparing the calculated volume fraction with measured data, the reliability of the developed model was discussed.

  • PDF

저탄소.저합금강의 Ti-Nb-V 복합 탄질화물 형성 및 기계적 특성에 미치는 V 첨가의 효과 (Effects of V on the Formation of Ti-Nb-V Cabonitrides and Mechanical Properties in Low Carbon HSLA Steels)

  • 강주석;김득중;박찬경
    • 소성∙가공
    • /
    • 제15권8호
    • /
    • pp.581-585
    • /
    • 2006
  • Effects of V on both the formation of Ti-Nb-V carbonitrides and mechanical properties of Ti-Nb bearing low carbon HSLA steels were investigated. Hot rolling process was simulated by using Gleeble 3500 system with the steels containing three different levels of V ($0{\sim}0.1wt.%$). Vanadium precipitated as Ti-Nb-V carbonitrides at austenite region but it did not precipitate as VC during austenite to acicular ferrite or bainitic ferrite phase transformation. As V content increased, the amount of Nb precipitates was decreased but the average size of Ti-Nb-V carbonitrides was increased due to larger diffusivity of V than that of Nb. Coarsened Ti-Nb-V carbonitrides could act as heterogeneous nucleation site during ${\gamma}{\rightarrow}{\alpha}$ phase transformation, thus, acicular ferrite transformation was promoted as V content increased, resulting in increase of upper shelf energy.

3Cr-1Mo강/STS-309L 오버레이 용접부의 천이영역 조직에 미치는 용접조건의 영향 (Effect of Welding Condition on Microstructure of Transient Zone in Overlay Weld of 3Cr-1Mo Steel/STS-309L)

  • 김동진;김병훈;지병하;김정태;김성곤;강정윤;박화순
    • Journal of Welding and Joining
    • /
    • 제18권2호
    • /
    • pp.176-176
    • /
    • 2000
  • Recently developed Austenite stainless steel,309L was to overlay on 3Cr-1Mo-V-Ti-B steels, using Electroslag welding process, which wide electrodes were adopted. Transition region in welding interlayer relating to disbonding crack was investigated. Also. the effect of welding condition on the width of transition region and coarsening grains of the austenite were studied.1) With increasing welding speed the width of martensite at transient region was increased, but the amount of delta ferrite in weld metal was reduced, being fine grained.2) The form of martensite at the transition region was occured by reversible transition region, leading to increasing Ms point.3) With increasing welding speed, the grain of austenite formed at the welding interface was finer. With increasing welding current under the same welding speed, the grain size of the austenite was finer. At high current, original grain size of the austenite is coarse, but the austenite has fine grains because the austenite was transformed to martensite during cooling.4) In the case of high welding speed, the width of martensite at the welding interface was increased, but the grain size of austenite at the welding interface was finer. This indicates that the inhibition of disbonding crack may be achieved through dispersening fine carbides in the grain boudary.(Received August 3, 1999)

알루미늄 첨가에 따른 오스테나이트계 Fe-23Mn-0.4C 고망간강의 극저온 충격 특성 (Effect of Al Addition on the Cryogenic-Temperature Impact Properties of Austenitic Fe-23Mn-0.4C Steels)

  • 김상규;김재윤;윤태희;황병철
    • 한국재료학회지
    • /
    • 제31권9호
    • /
    • pp.519-524
    • /
    • 2021
  • The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 ℃. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 ℃ and -196 ℃ exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.