Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.9.519

Effect of Al Addition on the Cryogenic-Temperature Impact Properties of Austenitic Fe-23Mn-0.4C Steels  

Kim, Sang-Gyu (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Kim, Jae-Yoon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Yun, Tae-Hee (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Korean Journal of Materials Research / v.31, no.9, 2021 , pp. 519-524 More about this Journal
Abstract
The impact properties of two austenitic Fe-23Mn-0.4C steels with different Al contents for cryogenic applications are investigated in this study. The 4Al steel consists mostly of austenite single-phase microstructure, while the 5Al steel exhibits a two-phase microstructure of austenite and delta-ferrite with coarse and elongated grains. Charpy impact test results reveal that the 5Al steel with duplex phases of austenite and delta-ferrite exhibits a ductile-to-brittle transition behavior, while the 4Al steel with only single-phase austenite has higher absorbed energy over 100 J at -196 ℃. The SEM fractographs of Charpy impact specimens show that the 4Al steel has a ductile dimple fracture regardless of test temperature, whereas the 5Al steel fractured at -100 ℃ and -196 ℃ exhibits a mixed fracture mode of both ductile and brittle fractures. Additionally, quasi-cleavage fracture caused by crack propagation of delta-ferrite phase is found in some regions of the brittle fracture surface of the 5Al steel. Based on these results, the delta-ferrite phase hardly has a significant effect on absorbed energy at room-temperature, but it significantly deteriorates low-temperature toughness by acting as the main site of the propagation of brittle cracks at cryogenic-temperatures.
Keywords
high-manganese; austenitic steel; impact property; cryogenic; ductile-to-brittle transition behavior;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. E. Dieter, Mechanical Metallurgy, 3rd ed., p.333, McGraw-Hill book Co., New York (1986).
2 P. Mallick, N. K. Tewary, S. K. Ghosh and P. P. Chattopadhyay, Mater. Charact., 133, 77 (2017).   DOI
3 J. Kim, S. Choi, D. Park and J. Lee, Mater. Des., 65, 914 (2015).   DOI
4 E. D. Marquardt, J. P. Le and R. Radebaugh, Cryogenic Material Properties Database, R. G. Ross Jr. ed., p. 681, Cryocoolers 11, Kluwer Academic Publishers, Boston (2002).
5 C. W. Marschall, R. F. Hehemann and A. R. Troiano, Trans. ASM, 55, 135 (1962).
6 Y. Tomota, M. Strum and J. W. Morris, Metall. Trans. A, 18, 1073 (1991).   DOI
7 J. Lee, S. S. Sohn, S. Hong, B. C. Suh, S. K. Kim, B. J. Lee, N. J. Kim and S. Lee, Metall. Mater. Trans. A, 45, 5419 (2014).   DOI
8 S. S. Sohn, S. Hong, J. Lee, B. C. Suh, S. K. Kim, B. J. Lee, N. J. Kim and S. Lee, Acta Mater., 100, 39 (2015).   DOI
9 D. Kim, G. H. Jang. T. Lee, C. S. Lee, Met. Mater. Int., 26, 1741 (2020).   DOI
10 S. I. Lee, S. Y. Lee, J. Han and B. Hwang, Mater. Sci. Eng., A, 742, 334 (2019).   DOI
11 S. Allain, J. P. Chateau and O. Bouaziz, Mater. Sci. Eng., A, 387, 143 (2004).   DOI
12 L. Remy and A. Pineau, Mater. Sci. Eng., A, 28, 99 (1977).   DOI
13 M. Choi, J. Lee, H. Nam, N. Kang, M. Kim and D. Cho, Met. Mater. Int., 26, 240 (2020).   DOI
14 Y. K. Lee and C. Choi, Metall. Mater. Trans. A, 31, 355 (2000).   DOI
15 G. B. Olson and M. Cohen, Metall. Trans. A, 7, 1897 (1976).   DOI
16 S. Curtze, V. T. Kuokkala, A. Oikari, J. Talonen and H. Hanninen, Acta Mater., 59, 1068 (2011).   DOI
17 S. Y. Lee, S. I. Lee and B. Hwang, Mater. Sci. Eng., A, 711, 22 (2018).   DOI
18 S. S. Sohn, B. J. Lee, S. Lee, N. J. Kim and J. H. Kwak, Acta Mater., 61, 5050 (2013).   DOI
19 Y. Kwon, J. H. Hwang, H. C. Choi, T. T. T. Trang, B. Kim, A. Zargaran and N. J. Kim, Met. Mater. Int., 26, 75 (2020).   DOI
20 I. Gutierrez-Urrutia and D. Raabe, Acta Mater., 60, 5791 (2012).   DOI
21 H. Kim, D. W. Suh and N. J. Kim, Sci. Technol. Adv. Mater., 14, 1 (2013).
22 S. H. Kim, H. Kim and N. J. Kim, Nature, 518, 77 (2015).   DOI
23 B. Fu, C. Pei, Y. Guo, L. Fu and A. Shan, Mater. Sci. Technol., 36, 827 (2020).   DOI
24 L. Fu, L. Fan, Z. Li, N. Sun, H. Wang, W. Wang and A. Shan, Mater. Sci. Eng., A, 582, 126 (2013).   DOI
25 J. S. Kim, J. B. Jeon, J. E. Jung, K. K. Um and Y. W. Chang, Met. Mater. Int., 20, 41 (2014).   DOI
26 L. Fu, M. Shan, D. Zhang, H. Wang, W. Wang and A. Shan, Metall. Mater. Trans. A, 48, 2179 (2017).   DOI