• Title/Summary/Keyword: feedback design

Search Result 2,653, Processing Time 0.025 seconds

Robust Adaptive Output Feedback Control Design for a Multi-Input Multi-Output Aeroelastic System

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.179-189
    • /
    • 2011
  • In this paper, robust adaptive control design problem is addressed for a class of parametrically uncertain aeroelastic systems. A full-state robust adaptive controller was designed to suppress aeroelastic vibrations of a nonlinear wing section. The design used leading and trailing edge control actuations. The full state feedback (FSFB) control yielded a global uniformly ultimately bounded result for two-axis vibration suppression. The pitching and plunging displacements were measurable; however, the pitching and plunging rates were not measurable. Thus, a high gain observer was used to modify the FSFB control design to become an output feedback (OFB) design while the stability analysis for the OFB control law was presented. Simulation results demonstrate the efficacy of the multi-input multi-output control toward suppressing aeroelastic vibrations and limit cycle oscillations occurring in pre- and post-flutter velocity regimes.

On optimal state feedback scheme to a position control system by the state observer (상태관측기에 의한 위치제어계의 최적 설계에 관한 연구)

  • 장세훈;박순규
    • 전기의세계
    • /
    • v.31 no.1
    • /
    • pp.43-49
    • /
    • 1982
  • This paper intends to compare and illustrate the feedback effects of the state feedback scheme to a positional control system by the use of the state observer. As a case study, the dynamic properties of a proposed positional control system lie derived, first, and the design of an optimal state feedback control system by the actual states is intended as a primary case study. For the illustration of the feedback effects with the asymptotic state observer, unobservability of some state variables are assumed and an optimal state feedback design is carried by using the estimated states which is reconstructed through the observer. That is, when some of the states of the system to be controlled are not avalable, an observer is constructed to estimate the unaccessable states. Adigital computer is used for the comparative study of the feedback effects in both cases. The resultant response of the proposed system have shown quite reasonable satisfaction oncontrol quality.

  • PDF

Design of Input-Output Feedback Linearization Controller using Neural Network (신경회로망을 이용한 입력-출력 피드백 선형화 제어기 설계)

  • Cho, Gyu-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.936-938
    • /
    • 1999
  • In this Paper, the design of a feedback linearization controller using multilayer neural network is proposed. The Proposed feedback linearization control scheme is designed by finding Lie derivatives from an identified neural networks. Lie derivatives are expressed as a combination of weights and neuron outputs. The proposed method is applied to an antenna arm problem and the simulation results show performance comparisons between the ordinary feedback linearization and the Proposed method.

  • PDF

Novel Protocol Design for Multi-Subband Feedback-Based Multicast Services in LTE Systems (LTE 시스템에서 다중 부대역을 이용한 피드백 기반의 멀티캐스트 서비스를 위한 새로운 프로토콜 설계)

  • Sohn, Kyungho;Kim, Young Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.386-388
    • /
    • 2017
  • In this paper, we propose a novel protocol design for multi-subband feedback-based multicast services in LTE systems, which reduces feedback overheads with guaranteeing QoS. Through the experimental results, it is manifested that the proposed protocol is able to reduce more feedback overheads in comparison with the conventional scheme.

The design of web tension control system using nonlinear feedback (비선형 장력 제어 시스템 설계)

  • Oh, Seung-Rohk;Oh, Dong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.164-166
    • /
    • 2005
  • We consider a web transport system. The objective of this paper is to design the controller such that desired tension and processing on web transport system. We propose the new design method which is independent with operating condition. The proposed method used a nonlinear feedback to transform to linear system. We show a performance of controller via the simulation.

  • PDF

Design of Dual Band LNA Using Source Feedback (소스 피드백을 이용한 이중대역 저잡음 증폭기 설계)

  • Jeon, Hyun-Jin;Choi, Kum-Sung;Koo, Kyung-Heon
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.127-128
    • /
    • 2007
  • A dual band LNA is designed to set input matching and noise matching with source transmission feedback for wireless LAN applications. Some design techniques for the transmission line feedback of the dual band LNA have been developed with input and output design equations. The measured results shows close agreement with the simulated performance.

  • PDF

The Design of Web Tension Control System Using a Nonlinear Feedback (비선형 궤환을 이용한 장력 제어 시스템 설계)

  • Oh, Seung-Rohk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.1
    • /
    • pp.14-16
    • /
    • 2006
  • We consider a web transport system. The objective of this paper is to design the controller such that desired tension and processing on web transport system. We propose the new design method hick is independent with operating condition. The proposed method used a nonlinear feedback to transform to linear system. We show a performance of controller via the simulation.

Model Predictive Observer Design with Feedback Genetic Algorithm (피드백 유전알고리즘 모델 예측 관측기 설계)

  • Park, Jong-Chon;Hong, Jin-Man;Lee, Hong-Gi
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.977-980
    • /
    • 2007
  • Observer design for the nonlinear systems is known to be difficult in general. This paper suggests a feedback GA-based model predictive observer for the observable systems. Feedback concept makes on-line design possible for the cases including observer design, where GA is implemented repeatedly every time instant. The effectiveness of our observer is shown by simulation.

Output Feedback Dynamic Surface Control of Flexible-Joint Robots

  • Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.223-233
    • /
    • 2008
  • A new output feedback controller design approach for flexible-joint (FJ) robots via the observer dynamic surface design technique is presented. The proposed approach only requires the feedback of position states. We first design an observer to estimate the link and actuator velocity information. Then, the link position tracking controller using the observer dynamic surface design procedure is developed. Therefore, the proposed controller can be simpler than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop system are uniformly ultimately bounded. Finally, the simulation results of a three-link FJ robot are presented to validate the good position tracking performance of the proposed control system.

Robust High Gain Adaptive Output Feedback Control for Nonlinear Systems with Uncertain Nonlinearities in Control Input Term

  • Michino, Ryuji;Mizumoto, Ikuro;Iwai, Zenta;Kumon, Makoto
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • It is well known that one can easily design a high-gain adaptive output feedback control for a class of nonlinear systems which satisfy a certain condition called output feedback exponential passivity (OFEP). The designed high-gain adaptive controller has simple structure and high robustness with regard to bounded disturbances and unknown order of the controlled system. However, from the viewpoint of practical application, it is important to consider a robust control scheme for controlled systems for which some of the assumptions of output feedback stabilization are not valid. In this paper, we design a robust high-gain adaptive output feedback control for the OFEP nonlinear systems with uncertain nonlinearities and/or disturbances. The effectiveness of the proposed method is shown by numerical simulations.