• Title/Summary/Keyword: fed-batch cultivation

Search Result 94, Processing Time 0.029 seconds

Current Status of the Research in Fed Batch Culture as an Aspect of General Optimization Problems in Fermentation

  • Choi, Cha-Yong
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1979.10a
    • /
    • pp.242-242
    • /
    • 1979
  • The general efforts of applied research and development can be divided into product development, process development, process design, process equipment design, and operation The fed batch culture as one effort of theprocess development in fermentation industry has been practiced since the early times of human history. One particular industrial application with long history is in the cultivation of the baker's yeast where the glucose effect at relatively high glucose concentration is the general rule.

  • PDF

On-line Measurement of Cooling Rate of a Fermenter and its Application for Fed-batch Control (발효조의 냉각량 연속 측정 및 이를 이용한 유가배양제어)

  • Heo, Won;Hong, Gun-Pyo
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.418-423
    • /
    • 2003
  • A laboratory jar fermenter was modified to measure the duration for cooling water supply and the temperatures of the coolant at the inlet and outlet of water jacket. Successful operation of temperature control and on-line measurement was achieved by adjusting optimum parameters of the Proportion-Integral-Derivative temperature controller. The variables measured on-line were used to estimate cooling rates from empirical equations comprised of the time period of cooling water supply and the temperatures of coolant. The measured cooling rate showed a good correlation to the specific growth rate during batch cultivation of E. coli. Cooling rate was measured and applied to programmed cell growth in a fed-batch cultivations. Three fed-batch cultivations were demonstrated by feeding substrate to follow the programmed cooling rates increasing exponentially.

High-Level Production of Astaxanthin by Fed-Batch Culture of Mutant Strain Phaffia rhodozyma AJ-6-1

  • KIM, SU-JIN;GEUN-JOONG KIM;DON-HEE PARK;YEON-WOO RYU
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.175-181
    • /
    • 2003
  • The production of a carotenoid astaxanthin, a growth-associated principal pigment, is limited in a batch cultivation, because a high glucose concentration severely inhibits the cell growth and also influences the carotenoid production. Therefore, a fermentation strategy including effective chemicals for the high-level production of cells and astaxanthin by a mutant strain Phaffia rhodozyma AJ-6-1 was developed in a fed-batch culture. First, a production medium for maximizing the cell and astaxanthin yields was formulated and optimized. Using this optimized medium, the highest cell and astaxanthin concentrations obtained were about 38.25 g/1 and 34.77 mg/1, respectively. In addition, an attempt was made to increase the amount of astaxanthin using effective chemicals such as ethanol and acetic acid, which are known at an inducer and/or precursor of carotenoid synthesis. When either 10g/1 ethanol or 5 g/1 acetic acid was added to investigate the resulting astaxanthin content, a relatively high astaxanthin concentration or 45.62 mg/l and 43.87 mg/1, respectively, was obtained, and the cell concentrations also increased slightly under these conditions. Therefore, these results imply that a fed-batch culture of the mutant strain P. rhodozyma AJ-6-1 could be effectively employed in the commercial production of astaxanthin, although the factors affecting the productivity remain to be elucidated.

발효조의 냉각량 측정을 통한 유가배양제어

  • Hong, Geon-Pyo;Heo, Won
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.181-184
    • /
    • 2000
  • The cooling rate of a bioreactor was measured to estimate the heat generation by microbial cultivation production. The estimated heat production was calculated from the varying temperature of cooling water. It was used for monitoring growth and specific metabolic events for microbial cultivations. Metabolic heat measured was also adopted for a control parameter for fed-batch cultivation.

  • PDF

Continuous Production of Natural Colorant, Betacyanin, by Beta vulgaris L. Hairy Root

  • Kim, Sun-Hee;Ahn, Sang-Wook;Bai, Dong-Kyu;Kim, Kwang-Soo;Hwang, Baik;Lee, Hyeon-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.716-721
    • /
    • 1999
  • It has been known that continuous cultivation of hairy root is difficult to maintain for a long period of time compared to the microbial and callus cultures. Chemostat cultivation was successfully carried out in order to economically produce a plant-based colorant, betacyanin, from red beet hairy root for more than 85 days in a 14-1 fermentor. The result from the chemostat cultivation was compared to those of the batch and fed-batch cultivations of red beet hairy roots. It was shown that hairy root reached its steady state within 50 days of the cultivation, and then maintained for about 25-30 days in a wide range of dilution rates. Total betacyanin production from the continuous process was also calculated to be 2.65g at 0.28(l/d) of dilution rate, compared to 0.196g from fed-batch cultivation. It was found that betacyanin production was a partially growth related process, yielding 0.376 mg/g-fresh wt. cell and $1.89{\times}10^{-5}$ mg/g-fresh wt. cell/d, with 0.92 of correlation factor in a partial growth-product model. It was also shown that the cell growth required was relatively large for maintenance amount of energy at a low dilution rate. The growth of hairy root was inhibited by high light intensity in following a photo-inhibition model. The growth parameters were estimated to be 0.3(l/d), $10.56kcal/\textrm{m}^2/h$,{\;}and{\;}35.81kcal/\textrm{m}^2/h$ for the maximum specific growth rate, half saturation light intensity, and inhibition light intensity, respectively.

  • PDF

Cellulase Production in Fed-Batch Culture by Trichoderma reesei Rut C30

  • Yu, Xiao-Bin;Yun, Hyun-Shik;Koo, Yoon-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.44-49
    • /
    • 1999
  • Cellulase production by fed-batch cultivation of Trichoderma reesei Rut C30 with various initial concentrations of Solka Floc in 1 % wheat bran-containing medium was investigated. The cellulase activity and productivity increased with initial Solka Floc concentration up to 5%. When a total Solka Floc concentration of 90 g/l was used for cellulase production, CMC (carboxymethyl cellulose) and FP (filter paper) activities, productivity, and yield were 359.7 U/ml, 30.61 U/ml, 161 FPU $L^{-1}$ $h^{-1}$, and 340 FPU $g^{-1}$, respectively. It was important to maintain a high cell concentration during cellulase production to obtain high cellulase activity and productivity. Cellulase powder was prepared by ammonium sulfate precipitation: FP activity was 396.7 U/g and CMC activity was 6481 U/g.

  • PDF

High Production of L-Ornithine by L-Citrulline Auxotroph of Breviabcterium ketoglutamicum : PART II : Production of L-Ornithine by Controlled Feeding of L-Arginine (Brevibacterium ketoglutamicum을 이용한 L-Ornithine 생산 연구 PART II : L-Arginine 제한공급에 의한 :-Ornithine 유가식 발효생산)

  • 류욱상;장형욱;이홍원;정준기;장순재;유연우;박영훈
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.4
    • /
    • pp.327-332
    • /
    • 1999
  • A highly productive fed-batch fermentation process was developed for the production of L-ornithine by using a new stabilized strain, Breviabcterium ketoglutamicum BK52. Fed-batch cultures with a continuous feeding of the complex medium were conducted on various operating conditions. The optimal concentration of phosphate in the complex medium was 2.1g/L. The optimal feeding rate of L-arginine was 0.028g/L/hr. The optimal feeding point of the complex medium was determined to be at 40 OD of the cell mass. The final L-ornithine concentrations within 64hrs of cultivation in 5 and 50 liter fermenters were 73g/L and 71g/L, respectively. The maximum overall L-ornithine productivity was 1.14g/L/hr which was about 2 times higher than that of the conventional fed-batch culture with intermittent feeding. The overall productivity of the fermentation system is remarkably improved by employing the optimized conditions, and it offers a significant potential for industrial application.

  • PDF

Controlled Fed-Batch Cultivation of Escherichia coli Mutant for L-Tryptophan Production (대장균 변이주의 조절식 유가배양법에 의한 L-트립토판 생산)

  • Lee, In-Young;Kim, Myung-Kuk;Kho, Yung-Hee;Kwak, Moo-Young;Lee, Hosull;Lee, Sun-Bok
    • Microbiology and Biotechnology Letters
    • /
    • v.16 no.6
    • /
    • pp.450-456
    • /
    • 1988
  • For optimal production of L-tryptophan using a regulatory mutant of Escherichia coli the relationship between product formation and acid production was investigated. Experimental results showed that the production level of L-tryptophan was lowered as the specific acid production rate increased. In order to reduce the amount of acid produced during the fermentation, a controlled fed-batch fermentation was employed. In this fed-batch process, the feed rate of the nutrient feed medium was controlled in relation to the oxygen level in the culture and thus the growth of the cells was regulated in such n way that the oxygen demand of the culture could not exceed the oxygen sup-ply. When E. coli cells were cultivated in a controlled fed-batch mode of tormentor operation, the specific acid production rate was significantly reduced and L-tryptophan production was increased as much as five times that obtained in a conventional fed-batch fermentation.

  • PDF

High-Cell-Density Fed-Batch Culture of Saccharomyces cerevisiae KV-25 Using Molasses and Corn Steep Liquor

  • Vu, Van Hanh;Kim, Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1603-1611
    • /
    • 2009
  • High-cell-density cultivation of yeast was investigated using the agricultural waste products corn steep liquor (CSL) and molasses. The Saccharomyces cerevisiae KV-25 cell mass was significantly dependent on the ratio between C and N sources. The concentrations of molasses and CSL in the culture medium were statistically optimized at 10.25% (v/v) and 16.87% (v/v), respectively, by response surface methodology (RSM). Batch culture in a 5-l stirred tank reactor using the optimized medium resulted in a cell mass production of 36.5 g/l. In the fed-batch culture, the feed phase was preceded by a batch phase using the optimized medium, and a very high dried-cell-mass yield of 187.63 g/l was successfully attained by feeding a mixture of 20% (v/v) molasses and 80% (v/v) CSL at a rate of 22 ml/h. In this system, the production of cell mass depended mainly on the agitation speed, the composition of the feed medium, and the glucose level in the medium, but only slightly on the aeration rate.