Khadir, Adnan I.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
Advances in nano research
/
v.11
no.6
/
pp.621-640
/
2021
Effect of thickness stretching on mechanical behavior of functionally graded (FG) carbon nanotubes reinforced composite (CNTRC) laminated nanoplates resting on elastic foundation is analyzed in this paper using a novel quasi 3D higher-order shear deformation theory. The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Single-walled carbon nanotubes (SWCNTs) are the reinforced elements and are distributed with four power-law functions which are, uniform distribution, V-distribution, O-distribution and X-distribution. To cover various boundary conditions, an analytical solution is developed based on Galerkin method to solve the governing equilibrium equations by considering the nonlocal strain gradient theory. A modified two-dimensional variable Winkler elastic foundation is proposed in this study for the first time. A parametric study is executed to determine the influence of the reinforcement patterns, power-law index, nonlocal parameter, length scale parameter, thickness and aspect ratios, elastic foundation, thermal environments, and various boundary conditions on stresses, displacements, buckling loads and frequencies of the CNTRC laminated nanoplate.
Genetic analysis has great potential as a tool to differentiate between different species and breeds of livestock. In this study, the optimal combinations of single nucleotide polymorphism (SNP) markers for discriminating the Yeonsan Ogye chicken (Gallus gallus domesticus) breed were identified using high-density 600K SNP array data. In 3,904 individuals from 198 chicken breeds, SNP markers specific to the target population were discovered through a case-control genome-wide association study (GWAS) and filtered out based on the linkage disequilibrium blocks. Significant SNP markers were selected by feature selection applying two machine learning algorithms: Random Forest (RF) and AdaBoost (AB). Using a machine learning approach, the 38 (RF) and 43 (AB) optimal SNP marker combinations for the Yeonsan Ogye chicken population demonstrated 100% accuracy. Hence, the GWAS and machine learning models used in this study can be efficiently utilized to identify the optimal combination of markers for discriminating target populations using multiple SNP markers.
Wind tunnel experiment was carried out to study the cross-wind layer forces on a square cross-section building model using a synchronous multi-pressure sensing system. The stationarity of measured wind loadings are firstly examined, revealing the non-stationary feature of cross-wind forces. By converting the measured non-stationary wind forces into an energetically equivalent stationary process, the characteristics of local wind forces are studied, such as power spectrum density and spanwise coherence function. Mathematical models to describe properties of cross-wind forces at different layers are thus established. Then, a conditional simulation method, which is able to ex-tend pressure measurements starting from experimentally measured points, is proposed for the cross-wind loading. The method can reproduce the non-stationary cross-wind force by simulating a stationary process and the corresponding time varying amplitudes independently; in this way the non-stationary wind forces can finally be obtained by combining the two parts together. The feasibility and reliability of the proposed method is highlighted by an ex-ample of across wind loading simulation, based on the experimental results analyzed in the first part of the paper.
Alazwari, Mashhour A.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
Advances in nano research
/
v.12
no.2
/
pp.117-137
/
2022
Effect of thickness stretching on free vibration, bending and buckling behavior of carbon nanotubes reinforced composite (CNTRC) laminated nanoplates rested on new variable elastic foundation is investigated in this paper using a developed four-unknown quasi-3D higher-order shear deformation theory (HSDT). The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Two new forms of CNTs reinforcement distribution are proposed and analyzed based on cosine functions. By considering the higher-order nonlocal strain gradient theory, microstructure and length scale influences are included. Variational method is developed to derive the governing equation and Galerkin method is employed to derive an analytical solution of governing equilibrium equations. Two-dimensional variable Winkler elastic foundation is suggested in this study for the first time. A parametric study is executed to determine the impact of the reinforcement patterns, nonlocal parameter, length scale parameter, side-t-thickness ratio and aspect ratio, elastic foundation and various boundary conditions on bending, buckling and free vibration responses of the CNTRC plate.
Sampath Kumar, S.;Manjunatha Reddy, B.N.;Nataraju, M.
International Journal of Computer Science & Network Security
/
v.22
no.9
/
pp.403-413
/
2022
Classification and analysis are improved factors for the realtime automation system. In the field of agriculture, the cultivation of different paddy crop depends on the atmosphere and the soil nature. We need to analyze the moisture level in the area to predict the type of paddy that can be cultivated. For this process, Ensemble Modulation Pattern system and Block Probability Neural Network based classification models are used to analyze the moisture and temperature of land area. The dataset consists of the collections of moisture and temperature at various data samples for a land. The Ensemble Modulation Pattern based feature analysis method, the extract of the moisture and temperature in various day patterns are analyzed and framed as the pattern for given dataset. Then from that, an improved neural network architecture based on the block probability analysis are used to classify the data pattern to predict the class of paddy crop according to the features of dataset. From that classification result, the measurement of data represents the type of paddy according to the weather condition and other features. This type of classification model assists where to plant the crop and also prevents the damage to crop due to the excess of water or excess of temperature. The result analysis presents the comparison result of proposed work with the other state-of-art methods of data classification.
Elshoky, Basma Ramdan Gamal;Younis, Eman M.G.;Ali, Abdelmgeid Amin;Ibrahim, Osman Ali Sadek
ETRI Journal
/
v.44
no.4
/
pp.613-623
/
2022
Autism spectrum disorder (ASD) is a developmental disorder associated with cognitive and neurobehavioral disorders. It affects the person's behavior and performance. Autism affects verbal and non-verbal communication in social interactions. Early screening and diagnosis of ASD are essential and helpful for early educational planning and treatment, the provision of family support, and for providing appropriate medical support for the child on time. Thus, developing automated methods for diagnosing ASD is becoming an essential need. Herein, we investigate using various machine learning methods to build predictive models for diagnosing ASD in children using facial images. To achieve this, we used an autistic children dataset containing 2936 facial images of children with autism and typical children. In application, we used classical machine learning methods, such as support vector machine and random forest. In addition to using deep-learning methods, we used a state-of-the-art method, that is, automated machine learning (AutoML). We compared the results obtained from the existing techniques. Consequently, we obtained that AutoML achieved the highest performance of approximately 96% accuracy via the Hyperpot and tree-based pipeline optimization tool optimization. Furthermore, AutoML methods enabled us to easily find the best parameter settings without any human efforts for feature engineering.
It is essential for geotechnical engineers to conduct studies and make predictions about the stability of slopes, since collapse of a slope may result in catastrophic events. The Gaussian process regression (GPR) approach was carried out for the purpose of predicting the factor of safety (FOS) of the slopes in the study that was presented here. The model makes use of a total of 327 slope cases from Iran, each of which has a unique combination of geometric and shear strength parameters that were analyzed by PLAXIS software in order to determine their FOS. The K-fold (K = 5) technique of cross-validation (CV) was used in order to conduct an analysis of the accuracy of the models' predictions. In conclusion, the GPR model showed excellent ability in the prediction of FOS of slope stability, with an R2 value of 0.8355, RMSE value of 0.1372, and MAPE value of 6.6389%, respectively. According to the results of the sensitivity analysis, the characteristics (friction angle) and (unit weight) are, in descending order, the most effective, the next most effective, and the least effective parameters for determining slope stability.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.4
/
pp.1080-1099
/
2023
Digital healthcare combined with telemedicine services in the form of convergence with digital technology and AI is developing rapidly. Digital healthcare research is being conducted on many conditions including shock. However, the causes of shock are diverse, and the treatment is very complicated, requiring a high level of medical knowledge. In this paper, we propose a shock detection method based on the correlation between shock and data extracted from hemodynamic monitoring equipment. From the various parameters expressed by this equipment, four parameters closely related to patient shock were used as the input data for a machine learning model in order to detect the shock. Using the four parameters as input data, that is, feature values, a random forest-based ensemble machine learning model was constructed. The value of the mean arterial pressure was used as the correct answer value, the so called label value, to detect the patient's shock state. The performance was then compared with the decision tree and logistic regression model using a confusion matrix. The average accuracy of the random forest model was 92.80%, which shows superior performance compared to other models. We look forward to our work playing a role in helping medical staff by making recommendations for the diagnosis and treatment of complex and difficult cases of shock.
Ahmad Abdelmawla;Shihan Ma;Jidong J. Yang;S. Sonny Kim
Geomechanics and Engineering
/
v.33
no.2
/
pp.203-209
/
2023
One major advantage of ground penetrating radar (GPR) over other field test methods is its ability to obtain subsurface images of roads in an efficient and non-intrusive manner. Not only can the strata of pavement structure be retrieved from the GPR scan images, but also various irregularities, such as cracks and internal cavities. This article introduces a deep learning-based approach, focusing on detecting subsurface cracks by recognizing their distinctive hyperbolic signatures in the GPR scan images. Given the limited road sections that contain target features, two data augmentation methods, i.e., feature insertion and generation, are implemented, resulting in 9,174 GPR scan images. One of the most popular real-time object detection models, You Only Learn One Representation (YOLOR), is trained for detecting the target features for two types of subsurface cracks: bottom cracks and full cracks from the GPR scan images. The former represents partial cracks initiated from the bottom of the asphalt layer or base layers, while the latter includes extended cracks that penetrate these layers. Our experiments show the test average precisions of 0.769, 0.803 and 0.735 for all cracks, bottom cracks, and full cracks, respectively. This demonstrates the practicality of deep learning-based methods in detecting subsurface cracks from GPR scan images.
The Journal of Asian Finance, Economics and Business
/
v.9
no.1
/
pp.203-211
/
2022
Foreign direct investment (FDI) has increased at an exponential rate during the last two decades. It is now a feature of emerging market economies as well. Foreign direct investment and financial development are important factors in an economy's growth. Various studies have examined the impact of foreign direct investment and financial development on economic growth in different countries and areas. However, the findings are currently inconclusive. Using updated data from 1970 to 2020, this study will examine the relationships between FDI, financial development, and economic growth in 30 rising economies.GDP is the dependent variable, while FDI, financial development, trade openness, infrastructure, exchange rate, and GDP growth are the independent factors. To estimate the panel data, we used the most recent econometric models. The study's major findings suggest that FDI and financial development are critical determinants in emerging economies' economic progress. Furthermore, multiple robustness checks supported the study's empirical findings. The results of this study include various practical recommendations for investors, governments, and policymakers, given the increased interest in global economic integration and member states' reliance on FDI as a critical aspect of sustaining prosperity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.