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Abstract 

 
Digital healthcare combined with telemedicine services in the form of convergence with digital 
technology and AI is developing rapidly. Digital healthcare research is being conducted on 
many conditions including shock. However, the causes of shock are diverse, and the treatment 
is very complicated, requiring a high level of medical knowledge. In this paper, we propose a 
shock detection method based on the correlation between shock and data extracted from 
hemodynamic monitoring equipment. From the various parameters expressed by this 
equipment, four parameters closely related to patient shock were used as the input data for a 
machine learning model in order to detect the shock. Using the four parameters as input data, 
that is, feature values, a random forest-based ensemble machine learning model was 
constructed. The value of the mean arterial pressure was used as the correct answer value, the 
so called label value, to detect the patient’s shock state. The performance was then compared 
with the decision tree and logistic regression model using a confusion matrix. The average 
accuracy of the random forest model was 92.80%, which shows superior performance 
compared to other models. We look forward to our work playing a role in helping medical 
staff by making recommendations for the diagnosis and treatment of complex and difficult 
cases of shock. 
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 1. Introduction 

Shock is a syndrome that occurs when the blood flow required for normal functioning of 
the main organs of the human body is insufficient or when the body cell group cannot 
metabolize nutrients normally. In other words, it refers to a state in which blood is insufficient 
in the body due to circulatory disorders in various organs responsible for the circulatory 
function in the human body. Typical symptoms of shock include confusion of consciousness 
and irregular pulse and breathing. However, these symptoms  occur not only in shock patients 
but also in patients with other conditions. Therefore, shock patients do not know when shock 
will occur, requiring continuous monitoring by medical staff. As a result, digital healthcare 
combined with telemedicine is rapidly [1-4] evolving under many conditions, including shock, 
in the form of a fusion of digital technology and AI. 

Shock is divided into four major categories according to the cause of the shock. The first 
type is hemorrhagic [5-6] and hypovolemic [7-8] shock. This type occurs due to bleeding, 
burns, or dehydration. The second type is cardiogenic shock, which  occurs due to conditions 
such as myocardial infarction, arrhythmia, cardiac pressure, and acute coronary syndrome  [9-
12]. Third, neurogenic shock [13-14] occurs due to spinal anesthesia, spinal cord injury, 
anaphylaxis, and similar conditions. The final type is septic shock [15-16], hypotension due to 
the symptoms of sepsis, which leads to shock. In addition, shock occurs as a result of a number 
of causes, and among them, in the case of a patient with severe symptoms, it is necessary to 
be admitted to a hospital and continuously monitored by medical staff. The only way to 
monitor the patient's condition is to connect various sensors attached to the patient's body to a 
hemodynamic monitoring device that displays data such as the patient's blood pressure and 
oxygen saturation. The medical staff directly checks for changes in the data. However, the 
current situation is that the number of medical personnel is insufficient to manage all seriously 
ill patients. To solve this problem, digital healthcare, which combines technologies such as AI 
and IoT, has recently been in the spotlight, and research on various diseases, including shock, 
is being actively conducted. If an AI neural network model can detect the possibility of shock 
and the exact timing of the occurrence, and if it can take an initial response quickly, more 
effective observation and treatment are possible with less medical staff.  

In the study of this paper, data was extracted from the hemodynamic monitoring equipment 
that expresses the status information of the shock patient, and the characteristics of the data 
were identified and used to detect the shock interval. Among them, the heart rate (HR) [17], 
left stroke work index (LSWI), stroke index (SI) [18], and stroke systemic vascular resistance 
index (SSVRI) [19] frequently show specific phenomena about the occurrence of shock. We 
propose a method to detect the onset of shock using parameters [20-21]. 

As well as various types of data, there are also various types of shock, and the symptoms 
shown by a patient differ depending on the type of shock. Therefore, different treatment 
methods must be applied depending on the type of shock. In addition, since the information 
on various hemodynamic parameters indicating a patient's vitality index is different for each 
patient, even if they have the same type of shock, the type of drug to be administered must 
also be different for each patient. Although this paper deals with content limited to MAP, a 
hemodynamic parameter related to shock diagnosis, we propose a random forest-based patient 
shock detection technique, a machine learning-based algorithm, for scalability to various types 
of shock in the future. When the scalability of shock detection is considered, there is an 
advantage in that the type of shock can be predicted and detected through a random forest 
classifier, and the appropriate treatment method can be identified for individual cases. 
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The structure of this paper is as follows. In Section 2, background knowledge related to 
shock and research on various machine learning models used to predict or detect shock are 
introduced, and in Section 3, our  random forest ensemble model for shock detection using 
data from hemodynamic monitoring equipment is introduced. Based on this model, Section 4 
discusses the results. Section 5 concludes with a discussion of the results and future research 
directions. 

2. Related Work 

2.1 Mean Arterial Pressure 
The goal of the management of shock is to maintain the appropriate blood pressure value. 

One of the most important types of patient's biometric data expressed by hemodynamic 
monitoring equipment is MAP. This type of data indicates the mean arterial pressure, which 
is the most important parameter for monitoring the patient's shock state [22]. Fig. 1 shows the 
change in MAP value per second for a specific patient. The normal MAP category of the 
hemodynamic monitoring equipment used in this paper should be higher than 70 mmHg. 
Table 1 below summarizes the normal ranges of the parameters of the hemodynamic 
monitoring equipment that have the highest relevance to patient shock diagnosis. 
 

 
Fig. 1. Change in the MAP value per second of a patient 

 

Table 1. Types of hemodynamic parameters and their normal categories 
Abbreviation Parameter Name Explanation Normal Range 

HR Heart rate The number of beats performed by 
the heart in one minute 

60 - 90 times/min  
(over 10 years old) 

BP 
(SBP/DBP) Blood pressure - 

SBP: 100 - 140 
DBP: 60 – 90 

(over 18 years old) 

SpO2 Oxygen saturation The need to calculate arterial 
oxygen saturation 96% - 100% 

TFC Thoracic fluid 
content 

The inverse of the thoracic base 
impedance 

man: 30 - 50 1/kΩ  
woman: 21 − 37 1/kΩ 

TFCI Thoracic fluid 
content index 

Chest fluid content in 
consideration of the body surface 

area (BSA) 
TFCI = TFC / BSA 
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SVV Stroke volume 
variation 

The change in the amount of blood 
ejected from the left ventricle into 

the aorta with each heartbeat 
SVV = 100x[(SVmax-

SVmin) /SVmean] 

SV Stroke volume 
The volume of blood delivered by 

the heart into the vasculature in 
one beat 

60 - 130 ml 

SI Stroke index One-time cardiac output 
considering the body surface area 30 - 65 ml/m2 

CO Cardiac output The total volume of blood pumped 
by the heart in one minute 4.5 - 8.5 L/min 

CI Cardiac index 
The value of the cardiac output 

(CO) indexed by the body surface 
area 

2.5 - 4.7 L/min/m2 

ACI Acceleration index Peak acceleration of aortic blood 
flow 

man: 70 - 150 1/100/S2 
woman: 90 − 170 1/100/S2 

LCWI Left cardiac work 
index 

The value of the left cardiac work 
indexed by the body surface area Adult: 2.7 - 5.1 kgm/m2 

LCW Left cardiac work 
The measure of work which the 

left ventricle must expend to pump 
blood 

Adult: 5.4–10 kgm 

LSWI Left stroke work 
index 

The measure of work which the 
left ventricle must expend to pump 

blood per heartbeat 
Adult: 39–73 gm/m2 

MAP Mean arterial 
pressure 

The measure of the average 
arterial perfusion pressure, which 

determines blood flow to the 
tissues 

70 mmHg < 

SVRI Systemic vascular 
resistance index 

The primary component of the 
afterload - 

SVR Systemic vascular 
resistance 

The vascular resistance of the 
systemic vasculature as seen by 

the left ventricle (afterload) 
Adult: 750–1500 dynscm−5 

SSVRI 
Stroke systemic 

vascular 
resistance index 

A measure of the afterload Adult: 90–170 dynscm−5m2 

 

2.2 Shock Treatment 
Shock refers to a condition in which there is insufficient blood flow to body tissues due to 

circulatory disorders. Shock can occur in a variety of ways. Treatment of shock at the level of 
abnormality a patient exhibits is very important. For example, in hemodynamic data, when 
blood pressure decreases, cardiac output per minute is normal, but the systemic vascular index 
decreases, so a vasopressor is administered. Conversely, when blood pressure rises, cardiac 
output per minute and systemic vascular index are normal, but the intravascular volume 
decreases, increasing the rate of fluid administration. Fig. 2 below shows part of the manual 
provided by BioZ, a manufacturer of hemodynamic monitoring equipment. Concerning the 
MAP and SI expressed by the hemodynamic monitoring equipment, the patient's shock is 
divided into 9 zones, and the drug injection guide for each zone is shown. 
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Fig. 2. Drug injection guide according to the detailed area 

 
 Class 1: MAP is normal, increased, and decreased. Administer fluids only when 

MAP is reduced. 
 Class 2: Because the MAP is over 70 mmHg, the condition is not in a shock state 

and does not require any special treatment. However, SSVRI is increased, so 
vasodilators are used. 

 Class 3: Because MAP is over 70 mmHg, it is not in a state of shock and no 
special treatment is required. However, SSVRI and SI are increased, and 
vasodilators or diuretics are administered.  

 Class 4: Because the MAP is over 70 mmHg, it is not in a state of shock, and no 
special treatment is required. However, diuretics are administered because the SI 
is increased. 

 Class 5: Ideal situation as MAP and SI are normal. 
 Class 6: Fluids and dobutamine administration because MAP and SI are 

decreased. 
 Class 7: MAP and SI are decreased, and SSVRI is decreased. Norepinephrine, 

dobutamine, fluid administration are administered. 
 Class 8: A situation in which MAP is decreased and SSVRI is decreased. 

Norepinephrine is administered. 
 Class 9: MAP is normal, increased, and decreased. Norepinephrine is 

administered only if MAP is decreased. 
 

2.3 Parameters Related to MAP 
As mentioned above, when the value of the MAP parameter expressed by the hemodynamic 

monitoring equipment is under 70 mmHg, it is judged that the patient is in shock.  
Fig. 3 shows the changes in the values of SI and LSWI before the value of MAP decreases. 

The vertical line drawn in the middle of the graph indicates the section where the value of 
MAP starts to decrease. When checking the left section based on the vertical line, it can be 
seen that the values of SI and LSWI decrease. 
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Fig. 3. Changes in SI and LSWI before MAP decrease 

 
Fig. 4 is a graph showing the changes in the values of HR and SSVRI before the values of 

MAP decrease. If you check the left section based on the vertical line in the middle of the 
graph, you can see that the values of HR and SSVRI increase. 

 

 
Fig. 4. Changes in HR and SSVRI before MAP decrease 
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In this paper, we use the four parameters, SI, LSWI, HR, and SSVRI as the input data of the 

machine learning model to predict whether the value of MAP will decrease or increase, that 
is, to detect the occurrence of a shock state. 

 

2.4 Patient Shock Monitoring 
The field of patient shock monitoring continuously evaluates the flow of the hemodynamic 

biometric data of patients. In addition, since the patient's vital signs are continuously observed, 
the goal is to detect the occurrence of shock and minimize damage while maximizing the 
treatment effect by quickly taking initial measures. A representative example is the IoT-based 
automatic shock treatment system conducted in collaboration with Hanyang University 
Hospital. The patient's biometric data represented by the hemodynamic monitoring equipment 
is recognized for letter and numeric values using optical character recognition (OCR), and the 
recognized values are stored in the database in real time [23]. Real-time stored data is analyzed 
by the server computer and when the value of the hemodynamic parameter determining patient 
shock exceeds the threshold, an infusion pump automatically injects the drugs according to the 
patient's physical condition. 

However, this OCR-based detection algorithm has the disadvantage of being less versatile 
because it focuses only on hypovascular shock and detects only MAP among various 
hemodynamic parameters. In this paper, since the machine learning-based random forest 
algorithm is used to determine the shock state of a patient, it can be applied not only to 
hypotensive shock but also to psychogenic shock, neurotic shock, and septic shock. Therefore, 
it is excellent in terms of versatility. 

 

2.5 Patient Shock Prediction 
If the field of patient shock detection aims to accurately detect when a shock occurs in a 

patient, the field of patient shock prediction differs in that it predicates the possibility of a 
patient's shock. In other words, detection identifies when a patient falls into a shock state, and 
prediction determines the probability that the patient may fall into a shock state. Patient shock 
prediction does not predict the pattern at the time of the shock, but its purpose is to prevent the 
occurrence by learning the pattern of changes in the hemodynamic parameters in a specific 
section before the time of the shock, thereby predicting the possibility of the patient's shock. 
This allows for measures such as drug injection to occur more rapidly. Lindberg et al. [24] 
predicted septic shock using ensemble techniques such as random forest and XGBoost. 
Netmati et al. [25] utilized high-resolution time series data from 4 to 12 hours before the onset 
to predict septic shock onset. Kim et al. [26] identified the possibility of predicting septic shock 
within 24 hours using a machine learning-based model. Finally, Lin et al. [27] conducted a 
study to predict septic shock using the convolutional-LSTM model. 
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3. Shock Detection Techniques Based On Random Forest 
 

 
Fig. 5. System Model Diagram 

 
In this paper, we focus on the detection of hypotensive shock among existing shocks. The 

purpose of the method for shock detection is for more accurate monitoring and diagnosis and 
treatment of diseases by medical staff when hypotensive shock occurs. Currently, most shock 
patients check whether their patient is in shock through the hemodynamic parameters 
expressed by the hemodynamic monitor. Among the many hemodynamic parameters, the most 
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important parameter for judging a patient's shock state is MAP. MAP is an indicator of the 
patient's average arterial pressure and when the value expressed by the monitor is 70 mmHg 
or more, it is in a normal state, and when the value is 70 mmHg or less, it is judged to be in 
shock. Diagnosis of the shock state is most dependent on MAP and SI, which are calculated 
through dependent on MAP and SI. These values are calculated through SSVRI, LSWI, CVP, 
PAOP, and other methods. Equation 1 and Equation 2 below express the method of calculating 
SSVRI and LSWI through MAP and SI as equations. 
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = ((𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐶𝐶𝐶𝐶𝐶𝐶)/ 𝑆𝑆𝑆𝑆)  ∗ 80       ( 1 ) 
 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = (𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) ∗ 𝑆𝑆𝑆𝑆 ∗ 0.014      ( 2 ) 
 

CVP stands for central venous pressure. POAP stands for Pulmonary Artery Occlusive 
Pressure. MAP is the average arterial pressure per heartbeat per cycle, and SI is the amount of 
blood pumped out from the heart divided by the body area. 

3.1 System Model 
Fig. 5 is a system model diagram related to the shock state detection method proposed in 

this paper. The dataset used was provided by Hanyang University Hospital, and the measured 
values of the hemodynamic monitoring device for the actual shock patients were used. First, 
since the data measured by the hemodynamic monitoring equipment is raw data, necessary 
pre-processing was performed. There were a total of 60 patients’ vital data expressed by the 
hemodynamic monitor, and among the 60 data, four parameters most closely related to the 
diagnosis of shock were selected, and a dataset was constructed. In case of a large difference 
in the unit value between 0 and 1, the normal interval and the shock interval were divided for 
each of several patient’s data. This is because, to detect a shocking state, information on when 
a normal interval or a shocking interval starts and ends is required. Finally, the entire dataset 
is composed of a training dataset to be input as the data input of the random forest model, a 
validation dataset for the training dataset, and a test dataset for performance testing of the 
trained model. In addition, to use the previously preprocessed hemodynamic parameter-based 
dataset as a training dataset for the random forest model, there is a need to match the input 
format of the data. The correct value for the data used as the input, label data is required. The 
previous normal interval is divided by the duration of the shock interval based on the start 
point of the shock interval for each patient summarized above. For example, if the shock 
interval lasts 30 min, the normal interval is also generated based on the dataset in which the 
normal section and the shock section are mixed and then used as the input of the random forest 
model. This random forest model learns the changing pattern of the input data received as 
input and concatenates the predicted values provided by each decision tree to detect the 
patient's normal state and shock state. 

3.2 Hemodynamic Dataset 
In this paper, an experiment was conducted based on the vitality data of the shock patients 

provided by Hanyang University Hospital. The hemodynamic parameters of the shock patient 
data provided by the hospital were measured from a total of 25 patients, and about 150 shock 
sections were observed. To measure the patient's hemodynamic parameters, a blood pressure 
monitor was attached to a hemodynamic monitor device, and it was worn on the patient's arm. 
The ICG sensor was then placed on the patient's neck and chest. Fig. 6 shows the ICG sensor 
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attachment guide provided by BioZ, a manufacturer of hemodynamic monitoring devices, to 
measure the patient's hemodynamic parameters. Among the ICG sensors that are directly 
attached to the patient's body, the blue and purple sensors were attached to the artery located 
on the patient's neck, and the green and orange sensors were attached to the chest. 
 

 
Fig. 6. ICG sensor attachment guide 

 
In this paper, a dataset of shock patients provided by Hanyang University Hospital was 

selected as the reference point with the following limitations. First, patient data for which data 
was not measured at all or at least one of the five parameters of MAP, HR, SI, SSVRI, and 
LSWI was not measured and excluded from the dataset. The patient's vital sign data were 
measured by attaching various sensor devices, including a blood pressure monitor, directly to 
the patient's body in order to ensure the accuracy. If the parameter MAP is not properly 
measured, it is impossible to determine whether the patient's current state is in shock or normal. 
If the data is not correct, the training may not proceed properly in the subsequent model 
training process. Second, patients with a missing value of more than 50% of the hemodynamic 
parameter value were excluded from the data set configuration. In general, in machine learning 
and deep learning, when missing values exist in a dataset, the average value of the entire data 
is filled in, or in the case of the sequence data, the missing values are handled by filling in the 
values before or after the missing values. However, if the missing value exceeds more than 
half of the total data, there is a possibility that it will be considered as randomly generated 
dummy data rather than pure patient biometric information, so it is appropriate for use as 
experimental data in this paper. Finally, based on the MAP value of each patient, if there was 
no shock period or if only the shock state continued, it was excluded from the experimental 
data. Since the detection method proposed in this paper detects the moment when the patient's 
state with a normal range of hemodynamic values falls into a shocking state, if only a shock 
ball exists or if a normal hemodynamic value continues without shock, this paper would not 
match the nature of the experiment to be conducted. 
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Based on the reasons listed above, among the data of 25 patients with shock, in this paper, 
data from patients No.1, No.2, No.5, No. 6, No. 8, No. 9, No.10, No.11, and No.12 were used. 
Table 2 below contains the shock interval information for each of the total patient data used 
in the experiment of this paper. 

 
Table 2. Shock interval information for each patient 

Patient Shock 
1S 

Shock 
1E 

Shock 
2S 

Shock 
2E 

Shock 
3S 

Shock 
3E 

Shock 
4S 

Shock 
4E 

Shock 
5S 

Shock 
5E 

P1 253 406 4555 4976 5103 5227 8760 9427 15558 15961 
P2 6401 7712 20805 21184 28802 28959 59506 60509 262935 264877 
P3 18862 21174 52454 53109 106191 106523 161679 162958 167747 168072 
P4 33932 35298 39236 41301 46532 46856 58281 59600 61230 62858 
P5 751 1071 39529 42861 59009 59993 147206 149518 17491 177421 
P6 481 831 55261 55628 63409 63756 83942 84293 114311 114657 
P7 74916 81958 120658 123296 142053 142386 151063 151393 154053 154381 
P8 9754 12059 32073 34429 49891 50216 61416 62433 89031 89370 
P9 29839 30119         

 

3.3 Data Pre-Processing 
The hemodynamic monitoring equipment used in this paper expresses about 60 patient vital 

signs. The hemodynamic parameter values used in this paper are 5 out of 60: MAP, HR, SI, 
SSVRI, and LSWI. Based on the patient data selection criteria described above, the data to be 
used were selected using the value of the MAP. After that, four parameters to be used as inputs 
of the random forest model were extracted. The data was measured by directly attaching the 
IGC sensor connected to the hemodynamic monitor device to the patient's body. Due to the 
characteristics of the sensor, there are a number of missing values caused by various factors 
such as not being properly attached to the patient's body. In addition, since the hemodynamic 
parameter value is recorded in the form of a sequence once per second, the same values are 
continuously recorded for a few seconds, and if there is a change, the changed value is recorded 
again in succession. Fig. 7 is a graph showing the changing pattern per unit sequence of HR, 
which is one of the hemodynamic parameters of a specific patient used in this paper. The x-
axis is the unit sequence recorded per second, and the y-axis is the HR value. Looking at the 
graph, it can be seen that the value (y-axis) of the HR parameter does not change every moment 
according to the passage of time (x-axis), and that it has the same value for a specific time. As 
mentioned earlier, the hemodynamic parameter value is recorded once a second in sequence, 
so if the patient's biometric data value does not change, it will inevitably have the same value 
for a specific time. 

In general, in machine learning and deep learning, missing values are processed by filling 
in the average value of the entire sequence for a specific column to process missing values. 
However, in the case of the hemodynamic parameter used in this paper, since the pattern of 
change per data sequence is different, the average value for each section is obtained instead of 
the general missing value processing, and the missing value is processed with the average 
value. Even in this case, the value (average value for each interval) of the y-axis has the same 
value according to the flow (missing value) of the x-axis. 

 

 
Fig. 7. HR data diagram that changes per second 
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In this paper, the section where the missing value starts, and the section where the missing 
value ends was found. The data immediately before the starting value of the missing value and 
the value immediately after the value where the missing value ends were averaged to deal with 
the missing value. As mentioned above, it can be confirmed that the same value continues for 
a specific time after the value is changed due to the characteristics of the hemodynamic 
parameter. If there is a missing value in the hemodynamic parameter with these characteristics 
and the missing value is treated as the average value for the entire sequence, there is a 
possibility that the missing value will be treated as a value completely different from the vital 
sign expressed by the original patient's body. 

3.4 Dataset 
 

 
Fig. 8. Dataset making by the patient 

 
A dataset was created based on the shock interval for each patient shown in Table 2. First, 

the shock interval information is read from the CSV file that summarizes the shock interval 
for each patient. Based on the start point of the shock interval for each patient read from the 
CSV file, the length of the shock interval in the previous normal interval is determined. Finally, 
a data set for each shock interval is generated based on the identified normal interval and shock 
interval information. As mentioned above, the generated data set consists of a normal interval 
and a shocking interval in a 1:1 ratio. Fig. 8 shows the creation of a training dataset and a test 
dataset for the shock interval based on the shock interval for each patient used as the dataset. 
The training dataset and test dataset consist of the X_train and Y_train, and the X_test and 
Y_test, respectively. X has the feature information, and Y has the label information. These 
datasets are structured as follows for each patient for future experimentation. For example, 
when the data on patient 1 is used for testing, the data of the patients other than patient 1 are 
used as the training data. That is, all the data of the remaining patients except for patient 1 are 
bundled to create a single set of study data and used as the input data for the random forest 



1092                                                                                               Jeong et al: Ensemble Deep Learning Model using  
Random Forest for Patient Shock Detection 

model. It also predicts and detects whether the patient's current state is in the shock or normal 
state by using the remaining patient 1 data as the test dataset of the learned model. For a more 
accurate comparison of the input data of the logistic regression and decision tree models used 
for performance comparison with the random forest model in this paper, data preprocessing 
was performed in the same way as above, and a data set was created. 

3.5 Random Forest Model 
In this paper, we used the random forest classification model provided by the python sklearn 

package among the bagging-based ensemble machine learning models for the detection of 
shock states in patients. The random forest classification model used here does not use all 
existing variables in each node of the decision tree, but randomly selects some of the input 
variables to create decision trees with different characteristics. The use of this type of random 
forest classification model results in a smaller correlation between each decision tree and can 
improve the overfitting phenomenon, which is pointed out as a weakness of the decision tree. 
In addition, when predicting whether the patient's state used as the label value in this paper is 
a shock state or a normal state, the accuracy is increased. 

4. Performance Evaluation 
In this section, we show some tests and results to check whether our proposed method would 

work for shock state detection. 

4.1 Experimental Setup 
 

Table 3. Workstation Specification Used in Experiments 
Software or Hardware Specification 

OS Windows 10 
CPU Intel® Core™ i5-9600KF 

GPU Nvidia GeForce GTX 
1660(6GB) 

RAM DDR4 16GB 
Python 3.8.13 

Tensorflow(CUDA 11.1) 2.8.0 
Keras 2.8.0 

 
In this paper, a workstation environment with the specifications shown in Table 3 was 

established for simulation. The OS environment used the Windows 10 environment. The CPU 
used an Intel® Core™ i5-9600KF, and a total of 16 Gb of DDR4 memory was used. In addition, 
the GPU was simulated using NVIDIA GeForce GTX 1660 (6 Gb). As software (framework), 
a simulation environment was built using python 3.8.13 and CUDA 11.1-based Tensorflow 
2.8.0 and Keras 2.8.0. 

The simulation was conducted by comparing the results of the patient's shock state detection 
using three models: a logistic regression model, a decision tree classifier model, and a random 
forest classifier model. To secure the reliability of the experimental results, all the 
hyperparameters for each model were set to the default values, and then the simulations were 
performed. After evaluating the performance indicators of each model, hyperparameter tuning 
was performed to improve the performance of the random forest. 
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Table 4. Hyperparameter information of the decision tree and random forest 
Parameters Decision Tree Random Forest 

minsamples_split 2 2 
min_samples_leaf 1 1 

max_features None Auto 
max_depth None None 

n_estimators  10 
 
Table 4 shows the hyperparameter information of the decision tree and random forest 

models. The min_samples_split is the minimum amount of sample data to split a node that is 
used to control overfitting. As the default number is set to 2 for both the decision tree and 
random forest, the number of nodes to be split increases, and the possibility of overfitting 
increases. The minimum amount of sample data to become a leaf node is the min_samples_leaf. 
It is used together with the min_samples_split parameter described above to control the data 
overfitting. In the case of non-uniform input data, that is, if data is concentrated only in a 
specific class, there is a need to set the corresponding parameter to be small. The maximum 
number of features considered for optimal segmentation is the max_feature. In the case of the 
decision tree classifier, the default value of the max_features parameter is none, but in the case 
of the random forest classifier, it is automatically set. The max_depth is the parameter that 
determines to what extent the maximum depth of the tree is set. It has the characteristic of 
dividing until the class of the input data is completely divided or it continues to divide until it 
becomes smaller than the set min_sample_split value. However, if the depth becomes too deep, 
there is a possibility of overfitting, so it is very important to find an appropriate value. The 
parameter used in the random forest is the n_estimators, which specifies the number of 
decision trees. The default value is 10, and the higher it is set, the better the expected 
performance. However, as the number of trees increases, the corresponding learning time also 
increases. 

4.2 Experimental Results 
 

Table 5. Confusion matrix for evaluating model performance 
 True (Predict Val) False (Predict Val) 

True (Actual Val) True Positive (TP) False Negative (FN) 
False (Actual Val) False Positive (FP) True Negative (TN) 

 
To verify the results of the experiments conducted in this paper, we compared the 

performance of the logistic regression model, the decision tree model, and the random forest 
model using the confusion matrix. The Actual Val in Table 5 is the actual value of the test 
dataset used for the trained model, and the Predict Val is the value predicted by the trained 
model. True Positive (TP), False Positive (FP), False Negative (FN), and True Negative (TN), 
respectively, based on the criteria for shock patient detection, are as follows. 

 TP: Success with positive predictions. That is, the trained model predicted that the 
patient was in shock, and the actual state of the patient is a shock state. 

 TN: Success with negative predictions. That is, the trained model predicted that 
the patient was not in shock, and the actual state of the patient is not in shock. 

 FP: Failed positive predictions. That is, although the trained model predicted a 
patient in shock, the actual patient’s condition was not in shock. 

 FN: Failing negative predictions. That is, although the trained model predicted that 
the patient was not in shock, the actual state of the patient was in shock. 
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Then, the performance of the actual machine learning model was evaluated using the 

confusion matrix. The metrics were as follows: 
Recall (Sensitivity): This is an indicator expressing how well the actual positive value was 

predicted with sensitivity. Similar to Accuracy, it means the ratio of the learned model 
predicting the actual shock patient as a shock patient. Therefore, the higher the Recall value, 
the better the model was trained. If this is expressed using the confusion matrix, it is as shown 
in Equation 3 below. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)   ( 3 ) 
 

Specificity: this indicator expressing the specificity of how well the actual negative value 
was predicted. In other words, it is a measure of how well the learned model predicted that a 
person who is not actually a shock patient is not a shock patient, and has the opposite character 
to Recall. If this is expressed using the confusion matrix, it is as shown in Equation 4 below. 

 
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)                ( 4 ) 

 
Precision: This is the precise ratio of the values predicted as positives that were actually 

positive. Accuracy is an index indicating what percentage of all results were predicted with 
accuracy as correctly predicted. If this is expressed using the confusion matrix, it is as shown 
in Equation 5 below. 

 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇/(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)             ( 5 ) 

 
Accuracy: This is an index indicating the percentage of correctly predicted results among 

all the predictions with accuracy. If this is expressed using the confusion matrix, it is as shown 
in Equation 6 below. 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇)/ (𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹)             ( 6 ) 

 
F1-Score: This is the harmonic average of Precision and Recall, and is an evaluation index 

used to overcome data bias because the data bias is too great to evaluate as Accuracy in an 
unbalanced state. If this is expressed using the confusion matrix, it is as shown in Equation 7 
below. 
 

𝐹𝐹1 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = (2 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∗ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)/ (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)                  ( 7 ) 
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Fig. 9. Performance indicator result for each model 

 
Fig. 10. Average performance indicators for each model for all patient data 
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Table 6. Logistic Regression model performance indicator results of all patient data 

Patient Accuracy Precision Recall F1-Score Specificity 
Patient1 85.44 81.88 91.01 86.20 79.86 
Patient2 82.15 82.84 81.09 81.96 83.20 
Patient5 88.03 99.89 76.14 86.41 99.92 
Patient6 85.18 77.15 99.97 87.09 70.40 
Patient8 62.25 61.49 65.53 63.45 58.97 
Patient9 84.68 77.75 97.16 86.38 72.20 

Patient10 91.19 92.89 89.21 91.01 93.17 
Patient11 92.02 86.27 99.95 92.61 84.09 
Patient12 86.43 99.04 73.57 84.43 99.29 
Average 84.15 84.36 85.96 84.39 82.34 

 
Table 7. Decision Tree model performance indicator results of all patient data 

Patient Accuracy Precision Recall F1-Score Specificity 
Patient1 92.20 93.73 90.44 92.06 93.95 
Patient2 88.60 96.55 80.05 87.53 97.14 
Patient5 92.98 97.67 88.07 92.62 97.90 
Patient6 97.90 91.14 97.90 94.40 90.48 
Patient8 86.17 97.48 74.25 84.30 98.08 
Patient9 90.68 86.08 97.04 91.24 84.31 

Patient10 92.69 97.19 87.92 92.32 97.46 
Patient11 96.24 95.46 97.10 96.27 95.38 
Patient12 84.29 94.86 72.50 82.19 96.07 
Average 91.31 94.46 87.25 90.33 94.53 

 
Table 8. Random Forest model performance indicator results of all patient data 

Patient Accuracy Precision Recall F1-Score Specificity 
Patient1 92.45 93.97 90.72 92.53 95.02 
Patient2 89.69 98.55 80.57 88.48 98.81 
Patient5 93.02 99.51 86.8 92.75 99.57 
Patient6 98.52 97.19 99.94 98.56 97.14 
Patient8 89.05 91.03 86.65 86.95 98.53 
Patient9 95.28 93.60 97.21 96.53 95.79 

Patient10 93.40 98.26 88.36 93.16 98.59 
Patient11 97.68 99.59 95.76 97.64 99.61 
Patient12 86.07 99.03 72.86 84.25 98.93 
Average 92.80 96.75 88.73 92.32 98.00 

 
 
Fig. 9 shows the performance index for predicting the test data of a specific patient for the 

three models used in the experiment: logistic regression, and decision tree, random forest. At 
this time, as described above, all the hyperparameters were set to the same default, and a 
simulation was performed. It can be seen that the random forest model shows better 
performance than the other models in all performance indicators including Accuracy. Table 6, 
Table 7, and Table 8 below show the performance indicators for the simulation results of all 
patients for each of the logistic regression, decision tree, and random forest models. Fig. 10 is 
a graphical representation of the average performance index of all patients in logistic 
regression, decision tree, and random forest. As described in Section 2 of this chapter, in order 
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to obtain a reliable evaluation result, all of the hyperparameter values were set to default, and 
simulations were performed. Afterwards, it was confirmed that the performance of the random 
forest model was the best. After that, all the hyperparameters were set to the default, and 
simulations were conducted, so the performance evaluation results of the random forest model 
were improved through the hyperparameter tuning process. In this paper, we found the optimal 
hyperparameters through the GridSearch module supported by sklearn. The GridSearch 
module finds the optimal hyperparameter by inputting the number of all cases when the user 
inputs the number of cases for the random forest hyperparameter. As a result of tuning the 
hyperparameter of the random forest model, it was confirmed that the best learning result 
occurred when the training was carried out with the default value. 

5. Discussion and Conclusion 
In this paper, the patient's shock state was detected by using the hemodynamic parameter 

dataset obtained through the hemodynamic monitoring device as the input of the random forest 
ensemble model. To detect the patient's shock, the MAP, HR, SI, LSWI, and SSVRI 
parameters were extracted from numerous hemodynamic parameters, and the missing values 
were processed and normalized. Afterwards, the four parameters of HR, SI, LSWI, and SSVRI 
were obtained from the training dataset. The characteristic points of the test dataset, that is, the 
features and labeling, were carried out based on the MAP. These datasets were then used as 
input for the random forest model. To compare the results, simulations were performed using 
the same dataset as input for the logistic regression model and the decision tree model. As a 
result of the simulation, the average performance of the random forest model was 92.80 for 
Accuracy, 96.75 for Precision, 88.73 for Recall, 92.32 for F1-score, and 98.00 for Specificity. 
On the other hand, the average performance of the logistic regression model was 84.15 for 
Accuracy, 84.36 for Precision, 85.96 for Recall, 84.39 for F1-score, and 82.34 for Specificity. 
The average performance of the decision tree model was 91.31 for Accuracy, 94.46 for 
Precision, 87.25 for Recall, 90.33 for F1-score, and 94.53 for Specificity. From the results of 
this experiment, it was confirmed that the random forest outperformed the decision tree and 
logistic registration models in all areas. Since the study conducted in this paper was conducted 
on only hypotensive shock patients among the various types of shock, it is difficult to say that 
it represents all shock patients in terms of research performance. However, based on this study, 
if we collect various data such as septic shock and psychogenic shock that exists in the future, 
find patterns, and use them for research, it may serve as a better model in terms of versatility. 
In addition, research results can be expected in which a patient's shock can be quickly 
responded to by injecting an appropriate drug for each type of shock as soon as shock is 
detected. In addition, if research to detect a patient's shock state is successful, it is thought that 
it will be possible to conduct a study to identify prognostic symptoms that appear before shock 
by using various hemodynamic parameter indicators and to make predictions based on this 
data. 
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