Browse > Article
http://dx.doi.org/10.12989/anr.2021.11.6.621

Novel four-unknowns quasi 3D theory for bending, buckling and free vibration of functionally graded carbon nanotubes reinforced composite laminated nanoplates  

Khadir, Adnan I. (Faculty of Engineering, Mechanical Engineering Department, King Abdulaziz University)
Daikh, Ahmed Amine (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie)
Eltaher, Mohamed A. (Faculty of Engineering, Mechanical Engineering Department, King Abdulaziz University)
Publication Information
Advances in nano research / v.11, no.6, 2021 , pp. 621-640 More about this Journal
Abstract
Effect of thickness stretching on mechanical behavior of functionally graded (FG) carbon nanotubes reinforced composite (CNTRC) laminated nanoplates resting on elastic foundation is analyzed in this paper using a novel quasi 3D higher-order shear deformation theory. The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Single-walled carbon nanotubes (SWCNTs) are the reinforced elements and are distributed with four power-law functions which are, uniform distribution, V-distribution, O-distribution and X-distribution. To cover various boundary conditions, an analytical solution is developed based on Galerkin method to solve the governing equilibrium equations by considering the nonlocal strain gradient theory. A modified two-dimensional variable Winkler elastic foundation is proposed in this study for the first time. A parametric study is executed to determine the influence of the reinforcement patterns, power-law index, nonlocal parameter, length scale parameter, thickness and aspect ratios, elastic foundation, thermal environments, and various boundary conditions on stresses, displacements, buckling loads and frequencies of the CNTRC laminated nanoplate.
Keywords
bending; buckling; free vibration; galerkin method; nonlocal strain gradient theory; quasi 3D shear deformation theory; variable Winkler elastic foundation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bekhadda, A., Cheikh, A., Bensaid, I., Hadjoui, A. and Daikh, A.A. (2019), "A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams", Adv. Aircr. Spacecr. Sci., 6(3), 189-206. https://doi.org/10.12989/aas.2019.6.3.189.   DOI
2 Daikh, A.A., Houari, M.S.A and Tounsi, A. (2019a), "Buckling analysis of porous FGM sandwich nanoplates due to heat conduction via nonlocal strain gradient theory", Eng. Res. Express., 1, 015022. https://doi.org/10.1088/2631-8695/ab38f9.   DOI
3 Daikh, A.A., Guerroudj, M., Elajrami, M. and Megueni, A. (2019b), "Thermal buckling of functionally graded sandwich beams", Adv. Mater. Res., 1156, 43-59. https://doi.org/10.4028/www.scientific.net/AMR.1156.43.   DOI
4 Daikh, A.A., Bachiri, A., Houari, M.S.A. and Tounsi. (2020a), "Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment", Mech. Based Des. Struct., 1-29. https://doi.org/10.1080/15397734.2020.1752232.   DOI
5 Al-Furjan, M.S.H., Habibi, M., rahimi, A., Chen, G., Safarpour, H. and Tounsi, A. (2020), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01144-2.   DOI
6 Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412. https://doi.org/10.1103/PhysRevB.80.195412.   DOI
7 Daikh, A.A., Houari, M.S.A., Belarbi, M.O. Chakraverty, S. and Eltaher, M.A. (2021), "Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates", Eng. Comput., 1-22. https://doi.org/10.1007/s00366-021-01413-8.   DOI
8 Daikh, A.A., Drai, A., Bensaid, I., Houari, M.S.A. and Tounsi A. (2020c), "On vibration of functionally graded sandwich nanoplates in the thermal environment", J. Sandw. Struct. Mater., 1-28. https://doi.org/10.12989/aas.2020.7.4.335.   DOI
9 Daikh, A.A., Bensaid, I., Bachiri, A., Houari, M.S.A. Tounsi, A. and Merzouki, T. (2020e), "On static bending of multilayered carbon nanotube-reinforced composite plates", Comput. Concrete., 26(2), 137-150. https://doi.org/10.12989/cac.2020.26.2.137.   DOI
10 Daikh, A.A., Bensaid, I. and Zenkour, A.M. (2020f), "Temperature dependent thermomechanical bending response of functionally graded sandwich plates", Eng. Res. Express., 2, 015006. https://doi.org/10.1088/2631-8695/ab638c.   DOI
11 Duc, N.D., Lee, J., Nguyen-Thoi, T. and Pham, T.T. (2017), "Static response and free vibration of functionally graded carbon nanotube-reinforced composite rectangular plates resting on Winkler-Pasternak elastic foundations", Aerosp. Sci. Technol., 68, 391-402. https://doi.org/10.1016/j.ast.2017.05.032.   DOI
12 Chi, S.H. and Chung, Y.L. (2006), "Mechanical behavior of functionally graded material plates under transverse load-Part I: Analysis", Int. J. Solid Struct., 43(13), 3657-74. https://doi.org/10.1016/j.ijsolstr.2005.04.011.   DOI
13 Vaghefi, R. (2020), "Thermo-elastoplastic analysis of functionally graded sandwich plates using a three-dimensional meshless model", Compos. Struct., 242, 112144. https://doi.org/10.1016/j.compstruct.2020.112144.   DOI
14 Wattanasakulpong, N., Chaikittiratana, A. (2015, "Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation", Appl. Math. Modell., 39, 5459-5472. https://doi.org/10.1016/j.apm.2014.12.058   DOI
15 Zhang, Y.Y., Wang, X.Y., Zhang, X., Shen, H.M. and She, G.L. (2021), "On snapbuckling of FG-CNTR curved nanobeams considering surface effects", Steel Compos. Struct., 38(3), 293-304. https://doi.org/10.12989/scs.2021.38.3.293.   DOI
16 Daikh, A.A., Houari, M.S.A. and Eltaher. M.A. (2020b), "A novel nonlocal strain gradient Quasi-3D bending analysis of sigmoid functionally graded sandwich nanoplates", Compos. Struct., 113347. https://doi.org/10.1016/j.compstruct.2020.113347.   DOI
17 Belarbi, M.O., Houari, M.S.A., Daikh, A.A., Garg, A., Merzouki, T., Chalak, H.D. and Hirane, H. (2021), "Nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel shear deformation theory", Compos. Struct., 264, 113712. https://doi.org/10.1016/j.compstruct.2021.113712.   DOI
18 Hamed, M.A. Abo-bakr, R.M. Mohamed, S.A. and Eltaher, M.A. (2020), "Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core", Eng. Comput., 6, 1929-1946. https://doi.org/10.1007/s00366-020-01023-w.   DOI
19 Soldatos, K.P. (1992), "A transverse shear deformation theory for homogeneous monoclinic plates", Acta. Mech., 94(3-4), 195-220. https://doi.org/10.1007/BF01176650.   DOI
20 Thai, H.T., Nguyen, T.K., Vo, T.P., Lee, J. (2014), "Analysis of functionally graded sandwich plates using a new first-order shear deformation theory", Eur. J. Mech. A Solid, 45, 211-25. https://doi.org/10.1016/j.euromechsol.2013.12.008.   DOI
21 Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak", Adv. Nano Res., 4(4), 309-329. http://doi.org/10.12989/anr.2016.4.4.309.   DOI
22 Ebrahimi, F. and Barati, A.F. (2016), "Analytical solution for nonlocal buckling characteristics of higher-order inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., 4(3), 229-249. http://doi.org/10.12989/anr.2016.4.3.229.   DOI
23 Ehyaei, J., Akbarshahi, A., and Shafiei, N. (2017), "Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam", Adv. Nano Res., 5(2), 141-169. http://doi.org/10.12989/anr.2017.5.2.141.   DOI
24 Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51-64. http://doi.org/10.12989/anr.2016.4.1.051.   DOI
25 Vuong, P.M. and Duc, N.D. (2020), "Nonlinear buckling and post-buckling behavior of shear deformable sandwich toroidal shell segments with functionally graded core subjected to axial compression and thermal loads", Aerosp. Sci. Technol., 106, 106084. https://doi.org/10.1016/j.ast.2020.106084.   DOI
26 Yang, F., Chong, A., Lam, D.C.C. and Tong, P. "Couple stress based strain gradient theory for elasticity", Int. J. Solid Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X.   DOI
27 Esawi, A.M. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: Potential and current challenges", Mater. Des., 28(9), 2394-401. https://doi.org/10.1016/j.matdes.2006.09.022.   DOI
28 Ekinci, K. and Roukes, M. (2005), "Nanoelectromechanical systems", Rev. Sci. Instrum., 76(6), 061101. https://doi.org/10.1063/1.1927327.   DOI
29 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.   DOI
30 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-10 . https://doi.org/10.1063/1.332803.   DOI
31 Thai, C.H., Zenkour, A.M., Wahab, M.A. and Nguyen-Xuan, H. (2016), "A simple four-unknown shear and normal deformations theory for functionally graded isotropic and sandwich plates based on isogeometric analysis", Compos. Struct., 139, 77-95. https://doi.org/10.1016/j.compstruct.2015.11.066.   DOI
32 She, G.L., Yuan, F.G., Ren, Y.R., Liu, H.B and Xiao, W.S. (2018), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623. https://doi.org/10.1016/j.compstruct.2018.07.063.   DOI
33 Belarbi, O.M., Houari, M.S.A., Hirane, H. and Daikh, A.A. (2020). "An efficient nonlocal finite element model for the bending and buckling analysis of functionally graded nanobeams using a novel parabolic shear deformation theory", Compos. Struct., 264, 113712. https://doi.org/10.1016/j.compstruct.2021.113712.   DOI
34 Bensaid, I. (2017), "A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams", Adv. Nano Res., 5(2), 113-126. http://doi.org/10.12989/anr.2017.5.2.113.   DOI
35 Thai, C.H., Kulasegaram, S., Tran, L.V. and Nguyen-Xuan, H. (2014), "Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach", Comput. Struct., 141, 94-112. http://doi.org/10.1016/j.compstruc.2014.04.003.   DOI
36 Thai, C.H., Ferreira, A., Bordas, S. and Rabczuk, T. (2013), "Nguyen-Xuan H. Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory", Eur. J. Mech. A Solid, 43, 89-108. https://doi.org/10.1016/j.euromechsol.2013.09.001.   DOI
37 Houari M.S.A, Tounsi, A. Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. http://doi.org/10.12989/scs.2016.22.2.257.   DOI
38 Houari, M.S.A., Tounsi, A. and Beg, O.A. (2013), "Thermoelastic bending analysis of functionally graded sandwich plates using a new higher order shear and normal deformation theory", Int. J. Mech. Sci., 76, 102-11. https://doi.org/10.1016/j.ijmecsci.2013.09.004.   DOI
39 Hussain, M., Naeem, M. N. and Tounsi, A. (2020a), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Adv. Nano Res., 8(3), 229-244. https://doi.org/10.12989/anr.2020.8.3.229.   DOI
40 Bensaid, I., Daikh, A.A. and Drai, A. (2020), "Size-dependent free vibration and buckling analysis of sigmoid and power law functionally graded sandwich nanobeams with microstructural defects", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(18), 3667-3688. https://doi.org/10.1177/0954406220916481.   DOI
41 Thang, P.T., Tran, P. and Nguyen-Thoi, T. (2021), "Applying nonlocal strain gradient theory to size-dependent analysis of functionally graded carbon nanotube-reinforced composite nanoplates" Appl. Math. Modell., 93, 775-791. https://doi.org/10.1016/j.apm.2021.01.001.   DOI
42 Touloukian, Y.S. (1967), Thermophysical Properties of High Temperature Solid Materials, MacMillan, New York, U.S.A.
43 Touratier M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.   DOI
44 Ferreira, A., Castro, L.M. and Bertoluzza, S. (2008), "A high order collocation method for the static and vibration analysis of composite plates using a first-order theory", Compos. Struct., 89(3), 424-32. https://doi.org/10.1016/j.compstruct.2008.09.006.   DOI
45 Esen, I., Abdelrahman, A.A. and Eltaher, Mohamed A. (2020), "Dynamics analysis of timoshenko perforated microbeams under moving loads", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01212-7.   DOI
46 Esen, I., Abdelrahman, A.A. and Eltaher, M.A. (2021), "Free vibration of a cracked FG microbeam embedded in an elastic matrix and exposed to magnetic field in a thermal environment", Compos. Struct., 261, 113552/ https://doi.org/10.1016/j.compstruct.2021.113552.   DOI
47 Esen, I., Daikh, A.A. and Eltaher, M.A. (2021), "Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load", Eur. Phys. J. Plus., 136, 458. https://doi.org/10.1140/epjp/s13360-021-01419-7.   DOI
48 Harris, P.J. (2004), "Carbon nanotubes and related structures: new materials for the twenty-first century", Am. Assoc. Phys. Teach., 72(3), 415. https://doi.org/10.1017/CBO9780511605819.   DOI
49 Liew, K.M. and Alibeigloo, A. (2020) , "Predicting bucking and vibration behaviors of functionally graded carbon nanotube reinforced composite cylindrical panels with three-dimensional flexibilities", Compos. Struct., 113039. https://doi.org/10.1016/j.compstruct.2020.113039.   DOI
50 Jena, S.K., Chakraverty, S. and Tornabene, F. (2019), "Dynamical behavior of nanobeam embedded in constant, linear, parabolic and sinusoidal types of Winkler elastic foundation using first-Order nonlocal strain gradient model", Mater. Res. Express., 6, 0850f2. https://doi.org/10.1088/2053-1591/ab2779.   DOI
51 Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solid, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001   DOI
52 Lu, L., She, G.L. and Guo, X. (2021a), "Size-dependent postbuckling analysis of graphene reinforced composite microtubes with geometrical imperfection", Int. J. Mech. Sci., 199, 106428. https://doi.org/10.1016/j.ijmecsci.2021.106428.   DOI
53 Daikh, A.A. and Megueni, A. (2018), "Thermal buckling analysis of functionally graded sandwich plates", J. Therm. Stress, 41(2), 139-159. https://doi.org/10.1080/01495739.2017.1393644.   DOI
54 Cao, Y., Khorami, M., Baharom, S., Assilzadeh, H. and Dindarloo, M.H. (2021), "The effects of multi-directional functionally graded materials on the natural frequency of the doubly-curved nanoshells", Compos. Struct., 258, 113403. https://doi.org/10.1016/j.compstruct.2020.113403.   DOI
55 Daikh, A.A. (2019), "Temperature dependent vibration analysis of functionally graded sandwich plates resting on Winkler/Pasternak/Kerr foundation", Mater. Res. Express., 6, 065702. https://doi.org/10.1088/2053-1591/ab097b.   DOI
56 Daikh, A.A. (2020), "Thermal buckling analysis of functionally graded sandwich cylindrical shells", Adv. Aircr. Spacecr. Sci., 7(4), 335-351. http://doi.org/10.12989/aas.2020.7.4.335.   DOI
57 Daikh, A.A. and Zenkour, A.M., (2019), "Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory", Mat. Res. Express., 6(11), 115707. https://doi.org/10.1088/2053-1591/ab48a9.   DOI
58 Lu, L., Wang, S., Li, M. and Guo, X. (2021b), "Free vibration and dynamic stability of functionally graded composite microtubes reinforced with graphene platelets", Compos. Struct., 272(15), 114231. https://doi.org/10.1016/j.compstruct.2021.114231.   DOI
59 Gurtin, M.E. and Murdoch, A.I. (1978), "Surface stress in solids", Int. J. Solid Struct., 197(14), 431-440. https://doi.org/10.1016/0020-7683(78)90008-2.   DOI
60 Han, Y. and Elliott, J. (2007) , "Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites", Computat. Mater. Sci., 39(2), 315-323. https://doi.org/10.1016/j.commatsci.2006.06.011.   DOI
61 Neves, A., Ferreira, A., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2013), "Free vibration analysis of functionally graded shells by a higher-order shear deformation theory and radial basis functions collocation, accounting for through-the-thickness deformations", Eur. J. Mech. A Solid, 37, 24-34 . https://doi.org/10.1016/j.euromechsol.2012.05.005.   DOI
62 Singh, D.B. and Singh, B.N. (2017), "New higher order shear deformation theories for free vibration and buckling analysis of laminated and braided composite plates", Int. J. Mech. Sci., 131, 265-277. https://doi.org/10.1016/j.ijmecsci.2017.06.053.   DOI
63 Nguyena, T.N., Ngo, T.D. and Nguyen-Xuan, H. (2017), "A novel three-variable shear deformation plate formulation: Theory and Isogeometric implementation", Comput. Methods Appl. Mech. Eng., 326, 376-401. http://doi.org/10.1016/j.cma.2017.07.024.   DOI
64 Shahsavari, D., Karami, B. and Mansouri S. (2018), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech. A Solid, 67, 200-214. https://doi.org/10.1016/j.euromechsol.2017.09.004.   DOI
65 Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91(1), 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026.   DOI
66 Mantari, J. and Ore, M. (2015), "Free vibration of single and sandwich laminated composite plates by using a simplified FSDT", Compos. Struct., 132, 952-959. https://doi.org/10.1016/j.compstruct.2015.06.035.   DOI
67 Daikh, A.A. and Zenkour, A.M. (2020), "Bending of functionally graded sandwich nanoplates resting on pasternak foundation under different boundary conditions", J. Appl. Computat. Mech., 6, 1245-1259. https://doi.org/10.22055/JACM.2020.33136.2166.   DOI
68 Daikh, A.A., Drai, A., Houari M.S.A. and Mohamed A. Eltaher. (2020d), "Static analysis of multilayer nonlocal strain gradient nanobeam reinforced by carbon nanotubes", Steel Compos. Struct., 36 (6), 643-656. https://doi.org/10.12989/scs.2020.36.6.643.   DOI
69 Hussain, M., Naeem, M. N., Asghar, S., & Tounsi, A. (2020b), "Theoretical impact of Kelvin's theory for vibration of double walled carbon nanotubes", Adv. Nano Res., 8(4), 307-322. https://doi.org/10.12989/anr.2020.8.4.307.   DOI
70 Nguyena, T.N., Thai, C.H., Luu, A.T., Nguyen-Xuan, H. and Lee, J. (2019), "NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells", Comput. Method Appl. M., 347, 983-1003. https://doi.org/10.1016/j.cma.2019.01.011.   DOI
71 Nguyen-Xuan, H., Thai, C.H. and Nguyen-Thoi T. (2013), "Isogeometric finite element analysis of composite sandwich plates using a higher order shear deformation theory", Compos. Part B Eng., 55, 558-74. https://doi.org/10.1016/j.compositesb.2013.06.044.   DOI
72 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.   DOI
73 She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.   DOI