Browse > Article
http://dx.doi.org/10.4218/etrij.2021-0097

Comparing automated and non-automated machine learning for autism spectrum disorders classification using facial images  

Elshoky, Basma Ramdan Gamal (Information Technology Section, Korean Egyptian Faculty for Industry and Energy Technology, Beni Suef Technological University)
Younis, Eman M.G. (Department of Information Systems, Faculty of Computers and Information, Minia University)
Ali, Abdelmgeid Amin (Computer Science Department, Faculty of Science, Minia University)
Ibrahim, Osman Ali Sadek (Computer Science Department, Faculty of Science, Minia University)
Publication Information
ETRI Journal / v.44, no.4, 2022 , pp. 613-623 More about this Journal
Abstract
Autism spectrum disorder (ASD) is a developmental disorder associated with cognitive and neurobehavioral disorders. It affects the person's behavior and performance. Autism affects verbal and non-verbal communication in social interactions. Early screening and diagnosis of ASD are essential and helpful for early educational planning and treatment, the provision of family support, and for providing appropriate medical support for the child on time. Thus, developing automated methods for diagnosing ASD is becoming an essential need. Herein, we investigate using various machine learning methods to build predictive models for diagnosing ASD in children using facial images. To achieve this, we used an autistic children dataset containing 2936 facial images of children with autism and typical children. In application, we used classical machine learning methods, such as support vector machine and random forest. In addition to using deep-learning methods, we used a state-of-the-art method, that is, automated machine learning (AutoML). We compared the results obtained from the existing techniques. Consequently, we obtained that AutoML achieved the highest performance of approximately 96% accuracy via the Hyperpot and tree-based pipeline optimization tool optimization. Furthermore, AutoML methods enabled us to easily find the best parameter settings without any human efforts for feature engineering.
Keywords
artificial intelligence; autism spectrum detection; deep learning; facial images; machine learning;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 O. Rudovic, Y. Utsumi, J. Lee, J. Hernandez, E. C. Ferrer, B. Schuller, and R. W. Picard, Culturenet: A deep learning approach for engagement intensity estimation from face images of children with autism, in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (Madrid, Spain), Oct. 2018, pp. 339-346.
2 S. Jahanara and S. Padmanabhan, Detecting autism from facial image, 2021.
3 V. S. P. Patnam, F. T. George, K. George, and A. Verma, Deep learning based recognition of meltdown in autistic kids, in Proc. IEEE Int. Conf. Healthcare Inform. (Park City, UT, USA), Aug. 2017, pp. 391-396.
4 G. Bradski, The OpenCV library, Dr. Dobb's J Softw Tools (2000).
5 F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and C. Gagne, DEAP: Evolutionary algorithms made easy, J. Mach. Learn. Res. 13 (2012), no. 1, 2171-2175.
6 R. S. Olson, N. Bartley, R. J. Urbanowicz, and J. H. Moore, Evaluation of a tree-based pipeline optimization tool for automating data science, in Proc. Genetic Evolutionary Computat. Conf. (Denver, CO, USA), July 2016, pp. 485-492.
7 Francois. Chollet, and other, Keras, 2015. https://github.com/fchollet/keras
8 J. Bergstra, D. Yamins, and D. D. Cox, Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms, in Proc. Python Sci. Conf. (Austin, TX, USA), 2013, pp. 13-19.
9 B. Komer, J. Bergstra, and C. Eliasmith, Hyperopt-sklearn: Automatic hyperparameter configuration for scikit-learn, in Proc. Python Sci. conf., 2014, pp. 32-37.
10 A. Cox, K. Klein, T. Charman, G. Baird, S. Baron-Cohen, J. Swettenham, A. Drew, and S. Wheelwright, Autism spectrum disorders at 20 and 42 months of age: Stability of clinical and ADI-R diagnosis, J. Child Psychol. Psychiatry 40 (1999), no. 5, 719-732.   DOI
11 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011), 2825-2830.
12 M. Feurer and F. Hutter, Hyperparameter optimization, Automated machine learning, Springer, Cham, 2019, pp. 3-33.
13 M. Leo, P. Carcagni, P. L. Mazzeo, P. Spagnolo, D. Cazzato, and C. Distante, Analysis of facial information for healthcare applications: A survey on computer vision-based approaches, Information 11 (2020), no. 3. https://doi.org/10.3390/info11030128   DOI
14 J. Dafflon, W. H. L. Pinaya, F. Turkheimer, J. H. Cole, R. Leech, M. A. Harris, S. R. Cox, H. C. Whalley, A. M. McIntosh, and P. J. Hellyer, An automated machine learning approach to predict brain age from cortical anatomical measures, Hum. Brain Mapp. 41 (2020), no. 13, 3555-3566.   DOI
15 S. Russell and P. Norvig, Artificial intelligence: A modern approach, 3rd ed., Prentice Hall Press, USA, 2009.
16 M. Blohm, M. Hanussek, and M. Kintz, Leveraging automated machine learning for text classification: Evaluation of AutoML tools and comparison with human performance, 2020. arXiv preprint arXiv:2012.03575.
17 J. M. Rehg, Behavior imaging: Using computer vision to study autism, in Proc. IAPR Conf. Machine. Vision Appicat. (Nara, Japan) June 2011, pp. 14-21.
18 A. Kleinsmith and N. Bianchi-Berthouze, Affective body expression perception and recognition: A survey, IEEE Trans. Affect. Comput. 4 (2012), no. 1, 15-33.   DOI
19 M. Boutrus, S. Z. Gilani, G. A. Alvares, M. T. Maybery, D. W. Tan, A. Mian, and A. J. O. Whitehouse, Increased facial asymmetry in autism spectrum conditions is associated with symptom presentation, Autism. Research 12 (2019), no. 12, 1774-1783.   DOI
20 C. M. Bishop, Pattern recognition and machine learning, Springer, 2006.
21 M. Beary, A. Hadsell, R. Messersmith, and M.-P. Hosseini, Diagnosis of autism in children using facial analysis and deep learning, 2020. arXiv preprint arXiv:2008.02890.
22 P. Mazumdar, G. Arru, and F. Battisti, Early detection of children with autism spectrum disorder based on visual exploration of images, Signal Process. Image Commun. 94 (2021), 116184.   DOI
23 W. Liu, M. Li, and L. Yi, Identifying children with autism spectrum disorder based on their face processing abnormality: A machine learning framework, Autism Res. 9 (2016), no. 8, 888-898.   DOI
24 F. C. Tamilarasi, and J. Shanmugam, Convolutional neural network based autism classification, in Proc. Int. Conf. Commun. Electron. Syst. (Coimbatore, India), June 2020, pp. 1208-1212.
25 Gerry PIOSENKA, Autistic children data set | Kaggle, 2020.
26 E. Bisong, Google Colaboratory, Building machine learning and deep learning models on Google Cloud Platform: A comprehensive guide for beginners, Apress, Berkeley, CA, 2019, pp. 59-64.
27 J. Rehg, G. Abowd, A. Rozga, M. Romero, M. Clements, S. Sclaroff, I. Essa, O. Ousley, Y. Li, and C. Kim, Decoding children's social behavior, in Proc. IEEE Conf. Comput. Vision Pattern Recogn. (Portland, OR, USA), June 2013, pp. 3414-3421.
28 S. S. Rajagopalan, Computational behaviour modelling for autism diagnosis, in Proc. ACM Int. Conf. Multimodal Interaction (Sydney Australia), Dec. 2013, pp. 361-364.
29 T. Han, F. N. B. Gois, R. Oliveira, L. R. Prates, and M. M. De Almeida Porto, Modeling the progression of COVID-19 deaths using Kalman Filter and AutoML, Soft. Comput. 1 (2021), 1-16.
30 S. Rajagopalan, A. Dhall, and R. Goecke, Self-stimulatory behaviours in the wild for autism diagnosis, in Proc. IEEE Int. Conf. Comput. Vision Workshops (Sydney, Australia), Dec. 2013, pp. 755-761.
31 M. Leo, P. Carcagni, C. Distante, P. L. Mazzeo, P. Spagnolo, A. Levante, S. Petrocchi, and F. Lecciso, Computational analysis of deep visual data for quantifying facial expression production, Appl. Sci. 9 (2019), no. 21, 4542.   DOI
32 M. D. Samad, N. Diawara, J. L. Bobzien, J. W. Harrington, M. A. Witherow, and K. M. Iftekharuddin, A feasibility study of autism behavioral markers in spontaneous facial, visual, and hand movement response data, IEEE Trans. Neural Syst. Rehabil. Eng. 26 (2017), no. 2, 353-361.   DOI