Browse > Article
http://dx.doi.org/10.12989/was.2022.35.6.369

Characteristics, mathematical modeling and conditional simulation of cross-wind layer forces on square section high-rise buildings  

Ailin, Zhang (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture)
Shi, Zhang (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture)
Xiaoda, Xu (Central Research Institute of Building and Construction CO., LTD. )
Yi, Hui (School of Civil Engineering, Chongqing University)
Giuseppe, Piccardo (Department of Civil, Chemical and Environmental Engineering - DICCA, University of Genoa)
Publication Information
Wind and Structures / v.35, no.6, 2022 , pp. 369-383 More about this Journal
Abstract
Wind tunnel experiment was carried out to study the cross-wind layer forces on a square cross-section building model using a synchronous multi-pressure sensing system. The stationarity of measured wind loadings are firstly examined, revealing the non-stationary feature of cross-wind forces. By converting the measured non-stationary wind forces into an energetically equivalent stationary process, the characteristics of local wind forces are studied, such as power spectrum density and spanwise coherence function. Mathematical models to describe properties of cross-wind forces at different layers are thus established. Then, a conditional simulation method, which is able to ex-tend pressure measurements starting from experimentally measured points, is proposed for the cross-wind loading. The method can reproduce the non-stationary cross-wind force by simulating a stationary process and the corresponding time varying amplitudes independently; in this way the non-stationary wind forces can finally be obtained by combining the two parts together. The feasibility and reliability of the proposed method is highlighted by an ex-ample of across wind loading simulation, based on the experimental results analyzed in the first part of the paper.
Keywords
conditional simulation; cross-wind loading; high-rise building; mathematical modeling; non-stationary forces;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Kwok, K.C.S. (1982), "Cross-wind response of tall buildings", Eng. Struct., 4, 256-262. https://doi.org/10.1016/0141-0296(82)90031-1.   DOI
2 Li, Y., Tian, X., Tee, K.F., Li, Q.S. and Li, Y.G. (2017), "Aerodynamic treatments for reduction of wind loads on high-rise buildings", J. Wind Eng. Ind. Aerod., 172, 107-115. https://doi.org/10.1016/j.jweia.2017.11.006.   DOI
3 Li, Y.G., Yan, J.H., Li, Y., Xiao, C.X. and Ma, J.X. (2021), "Wind tunnel study of wind effects on 90° helical and square tall buildings: A comparative study", J. Build. Eng., 42, 103068. https://doi.org/10.1016/j.jobe.2021.103068.   DOI
4 Liang, S., Liu, S., Li, Q.S., Zhang, L. and Gu, M. (2002), "Mathematical model of acrosswind dynamic loads on rectangular tall buildings", J. Wind Eng. Ind. Aerod., 90(12-15), 1757-1770. https://doi.org/10.1016/s0167-6105(02)00285-4.   DOI
5 Lin, N., Letchford, C., Tamura, Y., Liang, B. and Nakamura, O. (2005), "Characteristics of wind forces acting on tall buildings", J. Wind Eng. Ind. Aerod., 93, 217-242. https://doi.org/10.1016/j.jweia.2004.12.001.   DOI
6 MATLAB (2019), MATLAB version R2019b. The MathWorks Inc., Natick, Massachusetts.
7 Olhede, S. and Walden, A.T. (2004), "The Hilbert spectrum via wavelet projections", P. Roy Soc. A-Math Phy., 460(2044), 955-975.   DOI
8 Priestley, M.B. (1966), "Design relations for non-stationary processes", J. R. Stat. Soc. B., 28, 228-240. https://doi.org/10.1111/j.2517-6161.1966.tb00636.x.   DOI
9 Quan, Y., Zhang, Z., Gu, M. and Xiong, Y. (2012), "Study of the rms values of across-wind aero-dynamic base moment coefficients of high-rise buildings with square or rectangular sections", China Civil Eng. J., 45(4), 63-70. https://doi.org/10.1016/j.jweia.2013.01.013.   DOI
10 Roncallo, L. and Solari, G. (2020), "An evolutionary power spectral density model of thunderstorm outflows consistent with real-scale time-history records", J. Wind Eng. Ind. Aerod., 203, 104204. https://doi.org/10.1016/j.jweia.2020.104204.   DOI
11 Shinozuka, M. and Zhang, R. (1996), "Equivalence between Kriging and CPDF methods for conditional simulation", J. Eng. Mech. - ASCE, 122, 530-538. https://doi.org/10.12989/scs.2013.91.4.1301.   DOI
12 Solari, G. (1985), "Mathematical model to predict 3-D wind loading on buildings", J. Eng. Mech., 111(2), 254-276. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:2(254).   DOI
13 Solari, G., Pagnini, L.C. and Piccardo, G. (1997), "A numerical algorithm for the aerodynamic identification of structures", J. Wind Eng. Ind. Aerod., 69-71, 719-730. https://doi.org/10.1016/S0167-6105(97)00200-6.   DOI
14 Solari, G. and Tubino, F. (2002), "A turbulence model based on principal components", Probabilist. Eng. Mech., 17(4), 327-335. https://doi.org/10.1016/S0266-8920(02)00016-4.   DOI
15 Sumner, D., Rostamy, N., Bergstrom, D.J. and Bugg, J.D. (2015), "Influence of aspect ratio on the flow above the free end of a surface-mounted finite cylinder", Int. J. Heat Fluid Fl., 56, 290-304. https://doi.org/10.1016/j.ijheatfluidflow.2015.08.005.   DOI
16 Sumner, D., Rostamy, N., Bergstrom, D.J. and Bugg, J.D. (2017), "Influence of aspect ratio on the mean flow field of a surface-mounted finite-height square prism", Int. J. Heat Fluid Fl., 65, 1-20. https://doi.org/10.1016/j.ijheatfluidflow.2017.02.004.   DOI
17 Vanmarcke, E.H., Heredia-Zavoni, E. and Fenton, G.A. (1993), "Conditional simulation of spa-tially correlated earthquake ground motion", J. Eng. Mech. - ASCE, 119(11), 2333-2352. https://doi.org/10.1061/(ASCE)0733-9399(1993)119:11(2333).   DOI
18 Tanaka, H., Tamura, Y., Ohtake, K., Nakai M. and Kim, Y.C. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Ind. Aerod., 107-108, 179-191. https://doi.org/10.1016/j.jweia.2012.04.014.   DOI
19 Tamura, Y., Suganuma, S., Kikuchi, H. and Hibi, K. (1999), "Proper orthogonal decomposition of random wind pressure field", J. Fluid Struct., 13(7-8), 1069-1095. https://doi.org/10.1006/jfls.1999.0242.   DOI
20 Tschanz, T. and Davenport, A.G. (1983). "The base balance technique for the determination of dynamic wind loads", J. Wind Eng. Ind. Aerod., 13, 429-439. https://doi.org/10.1016/0167-6105(83)90162-9.   DOI
21 Walden, A.T. and Contreras Cristan, A. (1998), "The phase-corrected undecimated discrete wave-let packet transform and its application to interpreting the timing of events", Proc. R. Soc. Lond. A, 454, 2243-2266. https://doi.org/10.2307/53216.   DOI
22 Wang, H., Xu, Z., Wu, T. and Mao, J. (2018), "Evolutionary power spectral density of recorded typhoons at Sutong Bridge using harmonic wavelets", J. Wind Eng. Ind. Aerod., 177, 197-212. https://doi.org/10.1016/j.jweia.2018.04.015.   DOI
23 Xu, Y.L., Hu, L. and Kareem, A. (2014), "Conditional simulation of nonstationary fluctuating wind speeds for long-span bridges", J. Eng. Mech. - ASCE, 140(1), 61-73. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000589.   DOI
24 Zhang, S., Yang, Q., Solari, G., Li, B. and Huang, G. (2019), "Characteristics of thunderstorm outflows in Beijing urban area", J. Wind Eng. Ind. Aerod., 195, 104011. https://doi.org/10.1016/j.jweia.2019.104011.   DOI
25 Zhou, Y., Kijewski, T. and Kareem, A. (2003), "Aerodynamic loads on tall buildings: interactive database", J. Struct. Eng. - ASCE, 129(3), 394-404. https://doi.org/10.1061/(ASCE)0733-9.   DOI
26 Zhou, L., Tse, K.T., Hu, G. and Li, Y.T. (2021a), "Higher order dynamic mode decomposition of wind pressures on square buildings", J. Wind Eng. Ind. Aerod., 211, 104545. https://doi.org/10.1016/j.jweia.2021.104545.   DOI
27 Zhou, L., Tse, K.T., Hu, G. and Li, Y.T. (2021b), "Mode interpretation of interference effects between tall buildings in tandem and side-by-side arrangement with POD and ICA", Eng. Struct., 243, 112616. https://doi.org/10.1016/j.engstruct.2021.112616.   DOI
28 Zhou, Y. and Kareem, A. (2001), "Gust loading factor: new model", J. Struct. Eng. - ASCE, 127(2), 168-175. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(168).   DOI
29 Beitel, A., Heng, H. and Sumner, D. (2019), "The effect of aspect ratio on the aerodynamic forces and bending moment for a surface-mounted finite-height cylinder", J. Wind Eng. Ind. Aerod., 186, 204-213. https://doi.org/10.1016/j.jweia.2019.01.009.   DOI
30 Buresti, G. (2012), Elements of Fluid Dynamics. Imperial College Press, London, Britain.
31 Buresti, G., Lombardi, G. and Talamelli, A. (1998), "Low aspect-ratio triangular prisms in cross-flow: measurements of the wake fluctuating velocity field", J. Wind Eng. Ind. Aerod., 74-76, 463-473. https://doi.org/ 10.1016/S0167-6105(98)00042-7.   DOI
32 Buresti, G., Lombardi, G. and Bellazzini, J. (2004), "On the analysis of fluctuating velocity signals through methods based on the wavelet and Hilbert transforms", Chaos Solitons Fractals, 20(1), 149-158. https://doi.org/10.1081/MA-120005802.   DOI
33 Da Silva, B.L., Chakravarty, R., Sumner, D. and Bergstrom D.J. (2020), "Aerodynamic forces and three-dimensional flow structures in the mean wake of a surface-mounted finite-height square prism", Int. J. Heat Fluid Fl., 83, 108569. https://doi.org/10.1016/ j.ijheatfluidflow.2020.108569.   DOI
34 Buresti, G. and Iungo, G.V. (2010), "Experimental investigation on the connection between flow fluctuations and vorticity dynamics in the near wake of a triangular prism placed vertically on a plane", J. Wind Eng. Ind. Aerod., 98, 253-262.https://doi.org/10.1016/j.jweia.2009.10.004.   DOI
35 Chen, Z., Xu, Y., Huang, H. and Tse, K.T. (2020), "Wind tunnel measurement systems for un-steady aerodynamic forces on bluff bodies: review and new perspective", Sensors, 20(16), 4633. https://doi.org/10.3390/s20164633.   DOI
36 Chen, F.B. and Li, Q.S. (2004), "Application investigation of predicting of predicting wind loads on large-span roof by Kriging-POD method". E. M, 31(1), 91-96. https://doi.org/10.6052/j.issn.1000-4750.2012.07.0539. (in Chinese)   DOI
37 Ding, Z. and Tamura, Y. (2013), "Contributions of wind-induced overall and local behaviors for internal forces in cladding support components of large-span roof structure", J. Wind Eng. Ind. Aerod., 115, 162-172. https://doi.org/10.1016/j.jweia.2013.01.013.   DOI
38 Frison, G., Marra, A.M., Bartoli, G. and Scotta, R. (2021), "HFBB model test for tall buildings: A comparitive benchmark with a full-aeroelastic model", Eeg. Struct., 242, 112591. https://doi.org/10.1016/j.engstruct.2021.112591.   DOI
39 Gu, M., Ge, F. and Han, N. (2014), "Characteristics of across-wind layer wind force interference effect of two square tall buildings", J. Tongji Univ., 42(8), 1147-1152. https://doi.org/10.3969/j.issn.0253-374x.2014.05.001.   DOI
40 Gu, M. and Quan, Y. (2004), "Across-wind loads of typical tall buildings", J. Wind Eng. Ind. Aerod., 92(13), 1147-1165. https://doi.org/10.3969/j.issn.0253-374x.2014.05.001.   DOI
41 Gu, M. and Ye, F. (2006), "Frequence domain characteristics of wind loads on typical super-tall buildings", J. Build. Struct., 27(1), 30-36. https://doi.org/10.1016/S1010-5182(06)60391-0.   DOI
42 Gurley, K.R., Tognarelli, M.A. and Kareem, A. (1997), "Analysis and simulation tools for wind engineering", Probabilist. Eng. Mech., 12(1), 9-31. https://doi.org/10.1016/S0266-8920(96)00010-0.   DOI
43 Gurley, K.R. and Kareem, A. (1998), "A conditional simulation of non-normal velocity/pressure fields", J. Wind Eng. Ind. Aerod., 77-78, 39-51. https://doi.org/10.1016/S0167-6105(98)00130-5.   DOI
44 Hamed, K.H. and Rao, A.R. (1998), "A modified Mann-Kendall trend test for autocorrelated data", J. Hydrol, 204, 182-196. https://doi.org/10.1016/s0022-1694(97)00125-x.   DOI
45 Hassan, S., Molla, M.M., Nag, P., Akhter, N. and Khan, A. (2022), "Unsteady RANS simulation of wind flow around a building shape obstacle", Build Simul-China, 15(2), 291-312. https://doi.org/10.1007/s12273-021-0830-7.   DOI
46 Holmes, J.D., Sankaran, R., Kwok, K.C.S. and Syme, M.J. (1997), "Eigenvector modes of fluctu-ating pressures on low-rise building models", J. Wind Eng. Ind. Aerod., 69, 697-707. https://doi.org/10.1016/S0167-6105(97)00198-0.   DOI
47 Hu, L., Xu, Y.L. and Zheng, Y. (2012), "Conditional simulation of spatially variable seismic ground motions based on evolutionary spectra", Earthq. Eng. Struct. D., 41, 2125-2139. https://doi.org/10.1002/eqe.2178.   DOI
48 Huang, G., Chen, X., Liao, H. and Li, M (2013), "Predicting of tall building response to non-stationary winds using multiple wind speed samples", Wind Struct., 17(2), 227-244. https://doi.org/10.12989/was.2013.17.2.227.   DOI
49 Hu, G., Song, J., Hassanli, S., Ong, R. and Kwok, K.C.S. (2019), "The effects of a double-skin facade on the cladding pressure around a tall building", J. Wind Eng. Ind. Aerod., 191, 239-251. https://doi.org/10.1016/j.jweia.2019.06.005.   DOI
50 Hu, G., Liu, L., Tao, D., Song, J., Tse, K.T. and Kwok, K.C.S. (2020), "Deep learning-based investigation of wind pressures on tall building under interference effects", J. Wind Eng. Ind. Aerod., 201, 104138. https://doi.org/10.1016/j.jweia.2020.104138.   DOI
51 Huang, M., Tse, K.T., Chan, C.M., Kwok, K.C.S., Hitchcock, P.A. and Lou, W. (2011), "Mode shape linearization and correction in coupled dynamic analysis of wind-excited tall buildings", Struct. Des. Tall Spec., 20, 327-248. https://doi.org/10.1002/tal.620.   DOI
52 Huang, D.M. and Zhu, L.D. (2009), "Mathematical model of spatial correlation of wind pressure coefficients for super-tall buildings: comprehensive analysis method", China Civil Eng. J., 42(8), 26-36. https://doi.org/10.1007/978-3-540-85168-4_52.   DOI
53 Huang, D.M., Zhu, L.D. and Chen, W. (2014), "Power spectra of wind forces on a high-rise building with section varying along height", Wind Struct., 18(3), 295-320. https://doi.org/10.12989/was.2014.18.3.295.   DOI
54 Hui, Y., Li, B., Kawai, H. and Yang, Q.S. (2017), "Non-stationary and non-Gaussian Characteristics of wind speeds", Wind Struct., 24(1), 59-78. https://doi.org/10.12989/was.2017.24. 1.059.   DOI
55 Hui, Y., Yuan K., Chen, Z.Q. and Yang, Q.S. (2019), "Characteristics of aerodynamic forces on high-rise buildings with various facade appurtenances", J. Wind Eng. Ind. Aerod., 191, 76-90. https://doi.org/10.1016/j.jweia. 2019.06.002.   DOI
56 Kendall, M.G. (1970), Rank Correlation Methods, 4th Ed. Griffin, London, Britain.
57 Hui, Y., Tamura, Y. and Yoshida, A. (2012), "Mutual interference effects between two high-rise building models with different shapes on local peak pressure coefficients", J. Wind Eng. Ind. Aerod., 104-106, 98-108. https://doi.org/10.1016/j.jweia.2012.04.004.   DOI
58 Kameda, H. and Morikawa, H. (1994), "Conditional stochastic processes for conditional random fields", J. Eng. Mech. - ASCE, 120(4), 855-875.   DOI
59 Katsumura, A., Katagiri, J., Marukawa, H. and Fujii, K. (2001), "Effects of side ratio on character-istics of across-wind and torsional responses of high-rise buildings", J. Wind Eng. Ind. Aerod., 89(14), 1433-1444. https://doi.org/10.1016/S0167-6105(01)00145-3.   DOI
60 Krige, D.G. (1966), "Two-dimensional weighted moving average trend surfaces for ore valuation", Proceedings of the symposium on mathematical statistics and computer applications in ore valuation, Johannesburg.
61 Kumar, K.S. (2020), "Wind loading on tall buildings: review of indian standards and recommended amendments", J. Wind Eng. Ind. Aerod., 204, 104240. https://doi.org/10.1016/j.jweia.2020.104240.   DOI