• Title/Summary/Keyword: fatty acid ester

Search Result 387, Processing Time 0.023 seconds

An Analysis of Lipid Contents Produced from Three Different Microalgae Depending on the Lighting Period and Their Saccharification Conversion (빛의 조사 기간에 따른 세 가지 미세조류의 지질 함량 변화와 균체의 당화 전환율 비교)

  • Lim, Su-Bin;Jeong, Ji-Won;Yeon, Jae-Sung;Lee, Na-Kyung;Won, Jong-In
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.468-471
    • /
    • 2015
  • Microalgae have the advantages of being able to utilize the solar energy and culturing at a low cost. In particular, microalgae have a great potential in the production of biodiesel due to the high lipid content. Lipids produced from microalgae are converted to fatty acid methyl ester (FAME) by trans-esterification reaction and FAME is called a biodiesel in general. In addition, microalgae can also be utilized as a substrate for ethanol fermentation after saccharification reaction. In this study, three types of microalgae (Nanochloris, Dunaliella tertiolecta, Tetraselmis) were cultured and their lipid contents were compared. In addition, the effects of lighting period on the growth rate and lipid content were studied. Finally, the amounts of glucose produced from each saccharified microalgae were investigated. As a result, we demonstrated that D. tertiolecta has 43.6% higher lipid content and 22% higher glucose conversion than two others.

Variation of Microbial Communities with Crop Species in Controlled Horticultural Soils of Gyeongnam Province

  • Lee, Young-Han;Lee, Seong-Tae;Kim, Eun-Seok;Cho, Yong-Cho;Ok, Yong Sik;Kim, Min-Keun;Kim, HyeRan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.182-186
    • /
    • 2013
  • In this study, we examined the chemical properties and microbial community characteristics in 25 controlled horticultural soils (CHS) sampled from Gyeongnam Province by fatty acid methyl ester (FAME) method. The electrical conductivity of watermelon CHS was significantly (p < 0.05) higher than those of red pepper CHS, pumpkin CHS, and strawberry CHS. The amounts of total FAMEs, total bacteria, gram-negative bacteria, gram-positive bacteria, and fungi were significantly (p < 0.05) higher in red pepper CHS than those in strawberry CHS and pumpkin CHS. In addition, higher (p < 0.05) ratios of cy19:0 to $18:1{\omega}7c$ were detected in tomato CHS than those in watermelon CHS, pumpkin CHS, and red pepper CHS. This implied that microbial communities of tomato CHS were stressed more than other species of cultivation soils. Actinomycetes community in red pepper CHS was significantly (p < 0.05) higher than those in tomato CHS, strawberry CHS, and watermelon CHS. Differences in soil microbial community composition were highly associated with cultivated crop species which might result from the management inputs such as fertilizer, herbicide, and irrigation.

Impacts of Cropping Systems on the Distribution of Soil Microorganisms in Mid-mountainous Paddy

  • Kang, Ui-Gum;Shin, Woon-Chul;Choi, Jong-Seo;Lee, Yong-Bok;Lee, Young-Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.480-488
    • /
    • 2016
  • Soil microbes are widely well known to play an important role for sustainable agriculture in terms of crop healthy cultivation and environmental conservation. In this context, the distributional characteristics of soil microbes according to cropping systems were investigated under rice (R)-rice (R), rice (R)-barley (B)-rice (R), and soybean (S)-barley (B)-soybean (S) cropping condition to get basic informations for sustainable agriculture, where barley was grown for winter, in mid-mountainous loam paddy located at the altitude of 285 m above sea level in Sangju area from 2014 to 2015. Estimating from microbial communities by fatty acid methyl ester (FAME) method, a total biomass of bacteria, actinomycetes, and fungi in R-B-R plot was 37% and 40% higher than that in S-B-S and R-R plots, respectively (p < 0.05). In especial, bacteria and fungi were more in R-B-R plot than those in any other ones. B. japonicum, AMF, and mesophilic Bacillus sp. were also greater in S-B-S plot than those. In the community distribution, however, bacteria and actinomycetes showed comparatively high values in S-B-S plot relative to either R-R or R-B-R plot including rice, in which fungi outstanding. In the correlation between microbial biomass and soil properties changed by the cropping, bacteria was positively correlated with C:N ratio; actinomycetes with exchangeable Ca; fungi with available $P_2O_5$ (p < 0.05). While these microbes showed negative response to water stable aggregates of soil.

Effect of Bacillus subtilis S37-2 on Microorganisms in Soil and Growth of Lettuce (Lactuca sativa)

  • Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Seuk, Su-Won;Song, Jae-Kyeong;Kwon, Jang-Sik;Kim, Min-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.621-626
    • /
    • 2016
  • The present study evaluated the variations in soil microbial population of controlled horticultural land used for lettuce (Lactuca sativa) cultivation by their fatty acid methyl ester and chemical properties. We utilized four treatment groups, no treatment (NT), culture medium (CM), Bacillus subtilis S37-2 (KACC 91281P) ${\times}10^6CFU\;mL^{-1}$ (BS1), and Bacillus subtilis $S37-2{\times}10^7CFU\;mL^{-1}$ (BS2) and analyzed these variations throughout the before treatment and harvesting stage. The chemical properties such as pH, organic matter, available phosphate, and electrical conductivity in soils before treatment and harvesting stage showed no significant difference among the treatments. Total numbers of bacteria and microbial biomass C in soil treated with BS1 were larger than those of NT, CM, and BS2, whereas total number of fungi at the harvesting stage was significantly lower in the BS1 soil than in the NT and CM soils (P < 0.05). On basis of leaf length, leaf width, leaf number and leaf weight, the growth characteristics lettuce on the soil treated with BS1 and BS2 was faster than those of NT and CM soils. Yield of lettuce with treated BS1 and BS2 were 35% and 29% more than that of NT, respectively.

Effects of nitrogen and organic carbon sources on growth and lipid production of Chlorella sp. KR-1 in flask cultures (플라스크 배양에서 Chlorella sp. KR-1의 균체 성장 및 지질 생산에 대한 질소원 및 유기탄소원의 영향)

  • Lee, Ja-Youn;Seo, Kyoung Ae;Oh, You-Kwan
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.110-117
    • /
    • 2014
  • Recently microalgae have been proposed as a promising biodiesel feedstock, owing to their higher lipid productivity and non-arable land based cultivation system. Biomass and lipid productivities of microalgae are largely affected by various environmental and nutritional factors. In this study, the effects of nitrogen (nitrate and ammonium) and organic carbon (glucose and glycerol) sources on the cell growth and lipid production of Chlorella sp. KR-1 were examined in flask cultures. Under autotrophic culture conditions for 15 days, overall cell growth and lipid (fatty acid methyl ester, FAME) production with nitrate were better than those of ammonium, resulting in 1.06 g cell/L and 333 mg FAME/L, respectively. Maximal intracellular lipid contents (348 - 352 mg FAME/g cell) were observed at low concentrations of 1 mM for both nitrate and ammonium. In the supply of light, addition of glucose in the range of 1 - 20 g/L showed higher cell densities than the autotrophic cell growth condition. Higher lipid accumulation of 375 mg FAME/g cell could achieved at 5 g glucose/L albeit of relatively short incubation of 7 days. With glycerol, intracellular lipid contents were ~1.9 times lower than glucose cases although similar cell growths were observed for both carbon sources.

The Study of Instrumental Analysis of Deposits on Paper Machine and Holes/spots in Paper (제지공정 침착이물질 및 종이내 불순물성분의 기기분석적 고찰)

  • 마금자;이복진
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.3
    • /
    • pp.7-16
    • /
    • 1997
  • The constituents of deposits on paper machine and holes/spots in paper have been studied by consequently a combination of analytical techniques, such as FTIR, Py-GC-MS, and. EDS. FTIR spectroscopy was used prior to Py-GC-MS and EDS analysis, as preliminary analysis technique. The analysis of organic components were carried out with the use of a pyrolysis unit connected to a GC-MS, and inorganic components in ash were analysed by SEM equipped with an EDS analyzer after pyrolysis at 59$0^{\circ}C$. The deposits on the dryer section were complex pitch, which was the mixture of the organic contents of fatty acid ester and starch, and the inorganic contents of talc, clay, and calcium carbonate. The complex pitch was estimated to come from the coated broke. We knew the deposits on the metering rod of sym-sizer were associated with the interaction of unstable AKD and CaCO$_3$. The compositions of holes or spots varied considerably and were associated with chemical interaction within the system. The holes, spots, and blotches in the finished paper were PE and PP that were streamed out from pulp sources, complex pitch that were caused by the interaction of the different additives in the system, polymer such as flexible PVC that used for the prop of palette, and hot melt as adhesives that came from the inadequate handling of broke. In addition, we identified that poly(caprolactam) which is used for forming fabrics or press felts, could be mixed with the raw materials by accident and results in streak on coating.

  • PDF

Sensory and Instrumental Characteristics of Corn and Mung bean Starch Gels with Additives (첨가물질에 따른 옥수수와 녹두전분겔의 관능적 기계적 특성)

  • 이상금;신말식
    • Korean journal of food and cookery science
    • /
    • v.12 no.2
    • /
    • pp.193-199
    • /
    • 1996
  • Effects of addition of various additives, sucrose fatty acid ester 1170 (SE), carboxymethyl cellulose (CMC) and soy bean oil (SO) on textural characteristics for untreated and defatted corn and mung bean starch gels stored at room temperature for 24 hrs and 72 hrs were studied. In sensory and instrumental characteristics of starch gels with additives (0.5% for starch basis), the acceptability was highly correlated with cohesiveness and bend property of starch gels stored 24 hrs and springiness, cohesiveness, color, smoothness, bend property, hardness and clarity of starch gels stored 72 hrs. Regardless of adding additives, textural characteristics of defatted corn starch gels showed somewhat higher values than that of com starch gels. The acceptability of starch gels with additives was somewhat lowered in all the cases, which showed highly correlated in cohesiveness for 24 hrs and springiness for 72 hrs. Instrumental characteristics were similar to those of sensory evaluation, which showed no significant difference with additives.

  • PDF

Relationship of Topography and Microbial Community from Paddy Soils in Gyeongnam Province (경남지역 논 토양 지형과 미생물 군집의 관계)

  • Lee, Young-Han;Ahn, Byung-Koo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1158-1163
    • /
    • 2011
  • The present study was aimed to evaluate the soil microbial communities by fatty acid methyl ester (FAME) method in paddy soils at 20 sites in Gyeongnam Province. The soil microbial biomass carbon content of fan and valley $1,266mg\;kg^{-1}$ was higher than alluvial plain $578mg\;kg^{-1}$ (p<0.05). In addition, The dehydrogenase activity of fan and valley $204{\mu}g\;TPF\;g^{-1}\;24h^{-1}$ was higher than alluvial plain $93{\mu}g\;TPF\;g^{-1}\;24h^{-1}$ (p<0.05). The communities of total bacteria and Gram-negative bacteria in the fan and valley paddy soils were significantly higher than those in the alluvial plain paddy soils (p<0.05). Total bacteria communities should be considered as a potential responsible factor for the obvious microbial community differentiation that was observed between the fan and valley and alluvial plain in paddy soils.

Impacts of Soil Texture on Microbial Community from Paddy Soils in Gyeongnam Province (경남지역 논 토양 토성에 따른 미생물 군집 변화)

  • Lee, Young-Han;Ahn, Byung-Koo;Lee, Seong-Tae;Shin, Min-A;Kim, Eun-Seok;Song, Won-Doo;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1176-1180
    • /
    • 2011
  • The present study evaluated the soil microbial communities by fatty acid methyl ester (FAME) method in paddy soils at 11 sites for silt loam, 4 sites for sandy loam, and 5 sites for loam in Gyeongnam Province. The FAME content of fungi in loam ($76nmol\;g^{-1}$) was higher than that of in sandy loam ($45nmol\;g^{-1}$). Sandy loam had significantly lower ratio of cy19:0 to 18:$1{\omega}7c$ compared with that of silt loam (p<0.05), indicating that microbial stress decreased. In addition, actinomycetes community of loam was higher than that of sandy loam.

Light Stress after Heterotrophic Cultivation Enhances Lutein and Biofuel Production from a Novel Algal Strain Scenedesmus obliquus ABC-009

  • Koh, Hyun Gi;Jeong, Yong Tae;Lee, Bongsoo;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.378-386
    • /
    • 2022
  • Scenedesmus obliquus ABC-009 is a microalgal strain that accumulates large amounts of lutein, particularly when subjected to growth-limiting conditions. Here, the performance of this strain was evaluated for the simultaneous production of lutein and biofuels under three different modes of cultivation - photoautotrophic mode using BG-11 medium with air or 2% CO2 and heterotrophic mode using YM medium. While it was found that the highest fatty acid methyl ester (FAME) level and lutein content per biomass (%) were achieved in BG-11 medium with CO2 and air, respectively, heterotrophic cultivation resulted in much higher biomass productivity. While the cell concentrations of the cultures grown under BG-11 and CO2 were largely similar to those grown in YM medium, the disparity in the biomass yield was largely attributed to the larger cell volume in heterotrophically cultivated cells. Post-cultivation light treatment was found to further enhance the biomass productivity in all three cases and lutein content in heterotrophic conditions. Consequently, the maximum biomass (757.14 ± 20.20 mg/l/d), FAME (92.78 ± 0.08 mg/l/d), and lutein (1.006 ± 0.23 mg/l/d) productivities were obtained under heterotrophic cultivation. Next, large-scale lutein production using microalgae was demonstrated using a 1-ton open raceway pond cultivation system and a low-cost fertilizer (Eco-Sol). The overall biomass yields were similar in both media, while slightly higher lutein content was obtained using the fertilizer owing to the higher nitrogen content.