DOI QR코드

DOI QR Code

Impacts of Soil Texture on Microbial Community from Paddy Soils in Gyeongnam Province

경남지역 논 토양 토성에 따른 미생물 군집 변화

  • Lee, Young-Han (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Ahn, Byung-Koo (Jeollabuk-do Agricultural Research and Extension Services) ;
  • Lee, Seong-Tae (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Shin, Min-A (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Kim, Eun-Seok (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Song, Won-Doo (Gyeongsangnam-do Agricultural Research and Extension Services) ;
  • Sonn, Yeon-Kyu (National Academy of Agricultural Science, RDA)
  • Received : 2011.11.20
  • Accepted : 2011.12.09
  • Published : 2011.12.31

Abstract

The present study evaluated the soil microbial communities by fatty acid methyl ester (FAME) method in paddy soils at 11 sites for silt loam, 4 sites for sandy loam, and 5 sites for loam in Gyeongnam Province. The FAME content of fungi in loam ($76nmol\;g^{-1}$) was higher than that of in sandy loam ($45nmol\;g^{-1}$). Sandy loam had significantly lower ratio of cy19:0 to 18:$1{\omega}7c$ compared with that of silt loam (p<0.05), indicating that microbial stress decreased. In addition, actinomycetes community of loam was higher than that of sandy loam.

경남지역 논 토양의 미사질양토 11개소, 사양토 4개소, 양토 5개소를 선정하여 FAME 분석기법을 적용하여 미생물군집을 분석하였다. 곰팡이 지방산 함량은 양토가 $76nmol\;g^{-1}$로서 사양토 $45nmol\;g^{-1}$에 비해 유의적으로 많았다 (p<0.05). 토양 양이온 치환용량은 미사질양토가 $14.7cmol_c\;kg^{-1}$으로 사양토 $11.8cmol_c\;kg^{-1}$보다 유의적으로 높았다(p<0.05). cy19:0과 18:$1{\omega}7c$ 비율은 미사질양토가 0.77로 사양토 0.47 보다 유의적으로 높았다 (p<0.05). 방선균 군집은 양토가 1.34%로 사양토의 0.92%에 비해 유의적으로 많았다 (p<0.05).

Keywords

References

  1. Balser, T., K.K. Treseder, and M. Ekenler. 2005. Using lipid analysis and hyphal length to quantify AM and saprotrophic fungal abundance along a soil chronosequence. Soil Biol. Biochem. 37:601-604. https://doi.org/10.1016/j.soilbio.2004.08.019
  2. Bossio, D.A. and K.M. Scow. 1998. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 35:265-278. https://doi.org/10.1007/s002489900082
  3. Bradleya, K., A. Rhae, R.A. Drijberb, and J. Knopsc. 2006. Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 38:1583-1595. https://doi.org/10.1016/j.soilbio.2005.11.011
  4. Frostegard, A., A. Tunlid, and E. Baath. 1993. Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol. 59:3605-3617.
  5. Grogan, D.W. and J.E. Cronan. 1997. Cyclopropane ring formation in membrane lipids of bacteria. Microbiol. Mol. Biol. Rev. 61:429-441.
  6. Guckert, J.B., M.A. Hood, and D.C. White. 1986. Phospholipid ester-linked fatty acid profile changes during nutrient deprivation of Vibrio cholerae: increases in cis/trans ratio and proportions of cyclopropyl fatty acid. Appl. Environ. Microbial. 52:794-801.
  7. Hamel, C., K. Hanson, F. Selles, A.F. Cruz, R. Lemke, B. McConkey, and R. Zentner. 2006. Seasonal and long-term resource-related variations in soil microbial communities in wheat-based rotations of the Canadian prairie. Soil Biol. Biochem. 38:2104-2116. https://doi.org/10.1016/j.soilbio.2006.01.011
  8. Kieft, T.L., E. Wilch, K. O'connor, D.B. Ringelberg, and D.C. White. 1997. Survival and phospholipid fatty acid profiles of surface and subsurface bacteria in natural sediment microcosms. Appl. Environ. Microbiol. 63:1531-1542.
  9. Kim E.S. and Y.H. Lee. 2011. Response of soil microbial communities to applications of green manures in paddy at an early rice growing stage. Korean J. Soil Sci. Fert. 44:221-227. https://doi.org/10.7745/KJSSF.2011.44.2.221
  10. Lee, Y.H. and H.D. Yun. 2011. Changes in microbial community of agricultural soils subjected to organic farming system in Korean paddy fields with no-till management. J. Korean Soc. Appl. Biol. Chem. 54(3): 434-441. https://doi.org/10.3839/jksabc.2011.067
  11. Lee, Y.H. and H. Kim. 2011. Response of soil microbial communities to different farming systems for upland soybean cultivation. J. Korean Soc. Appl. Biol. Chem. 54(3):423-433. https://doi.org/10.3839/jksabc.2011.066
  12. Lee, Y.H. and S.K. Ha. 2011a. Impacts of chemical properties on microbial population from upland soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(2):242-247. https://doi.org/10.7745/KJSSF.2011.44.2.242
  13. Lee, Y.H. and S.K. Ha. 2011b. Impacts of topography on microbial community from upland soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(3):485-491. https://doi.org/10.7745/KJSSF.2011.44.3.485
  14. Lee, Y.H. and S.T. Lee. 2011. Comparison of microbial community of orchard soils in Gyeongnam Province. Korean J. Soil Sci. Fert. 44(3):492-497. https://doi.org/10.7745/KJSSF.2011.44.3.492
  15. Lee, Y.S., J.H. Kang, K.J. Choi, S.T. Lee, E.S. Kim, W.D. Song, and Y.H. Lee. 2011. Response of soil microbial communities to different cultivation systems in controlled horticultural land. Korean J. Soil Sci. Fert. 44(1):118-126. https://doi.org/10.7745/KJSSF.2011.44.1.118
  16. Macalady, J.L., M.E. Fuller, and K.M. Scow. 1998. Effects of metam sodium fumigation on soil microbial activity and community structure. J. Environ. Qual. 27:54-63.
  17. Mechri, B., H. Chehab, F. Attia, F.B. Mariem, M. Braham, and M. Hammami. 2010. Olive mill wastewater effects on the microbial communities as studied in the field of olive trees by analysis of fatty acid signatures. Eur. J. Soil Bio. 146:312-318.
  18. Min, S.G., S.S. Park, and Y.H. Lee. 2011. Comparison of soil microbial communities to different practice for strawberry cultivation in controlled horticultural land. Korean J. Soil Sci. Fert. 44(3):479-484. https://doi.org/10.7745/KJSSF.2011.44.3.479
  19. NIAST. 2000. Methods of analysis of soil and plant. National Institute of Agricultural Science and Technology, Suwon, Korea.
  20. Olsson, P.A., R. Francis, D.J. Read, and B. Soderstrom. 1998. Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil micro-organisms as estimated by measurement of specific fatty acids. Plant Soil 201:9-16. https://doi.org/10.1023/A:1004379404220
  21. SAS Institute. 2006. SAS Version 9.1.3. SAS Inst., Cary, NC.
  22. Schutter, M.E. and R.P. Dick. 2000. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64:1659-1668. https://doi.org/10.2136/sssaj2000.6451659x
  23. Wright, S.F., M. Franke-Snyder, J.B. Morton, and A. Upadhyaya. 1996 Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant Soil 181:193-203. https://doi.org/10.1007/BF00012053
  24. Zelles, L. 1997. Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35:275-294. https://doi.org/10.1016/S0045-6535(97)00155-0

Cited by

  1. The Relationship between Microbial Characteristics and Glomalin Concentrations in Paddy Soils of Gyeongnam Province vol.45, pp.5, 2012, https://doi.org/10.7745/KJSSF.2012.45.5.792
  2. Impacts of Cropping Systems on the Distribution of Soil Microorganisms in Mid-mountainous Paddy vol.49, pp.5, 2016, https://doi.org/10.7745/KJSSF.2016.49.5.480
  3. Chemical Properties of Paddy Soils and Factors Affecting Their Change in Jeonnam Province vol.48, pp.5, 2015, https://doi.org/10.7745/KJSSF.2015.48.5.492