DOI QR코드

DOI QR Code

An Analysis of Lipid Contents Produced from Three Different Microalgae Depending on the Lighting Period and Their Saccharification Conversion

빛의 조사 기간에 따른 세 가지 미세조류의 지질 함량 변화와 균체의 당화 전환율 비교

  • Lim, Su-Bin (Department of Chemical Engineering, Hongik University) ;
  • Jeong, Ji-Won (Department of Chemical Engineering, Hongik University) ;
  • Yeon, Jae-Sung (Department of Chemical Engineering, Hongik University) ;
  • Lee, Na-Kyung (Department of Chemical Engineering, Hongik University) ;
  • Won, Jong-In (Department of Chemical Engineering, Hongik University)
  • Received : 2014.09.22
  • Accepted : 2014.11.27
  • Published : 2015.08.01

Abstract

Microalgae have the advantages of being able to utilize the solar energy and culturing at a low cost. In particular, microalgae have a great potential in the production of biodiesel due to the high lipid content. Lipids produced from microalgae are converted to fatty acid methyl ester (FAME) by trans-esterification reaction and FAME is called a biodiesel in general. In addition, microalgae can also be utilized as a substrate for ethanol fermentation after saccharification reaction. In this study, three types of microalgae (Nanochloris, Dunaliella tertiolecta, Tetraselmis) were cultured and their lipid contents were compared. In addition, the effects of lighting period on the growth rate and lipid content were studied. Finally, the amounts of glucose produced from each saccharified microalgae were investigated. As a result, we demonstrated that D. tertiolecta has 43.6% higher lipid content and 22% higher glucose conversion than two others.

본 연구에서는 빛의 조사기간을 변화시켜 세 종류의 미세조류(Nanochloris, Dunaliella tertiolecta, Tetraselmis)를 배양하고 이들의 성장속도 및 지질 함량을 분석하였다. 빛의 조사기간은 한국의 여름철과 겨울철의 일조시간을 반영해 각각 14.5시간과 7시간으로 설정하였다. 또한, 지질 추출 후 남은 미세조류를 당화시켜 포도당 전환율을 비교함으로써 미세조류의 바이오매스로써의 가능성을 가늠하고자 하였다. 실험 결과 D. tertiolecta가 다른 두 종의 미세조류보다 빛의 조사기간이 7시간일 때 최대 38% 높은 성장속도를 나타냈으며 지질함량은 최대 43.6% 정도 높은 결과를 보였다. 포도당으로의 당화 전환율도 D. tertiolecta가 최대 22% 높은 결과를 보였다.

Keywords

References

  1. Minowa, T., Yokoyama, S., Kishimoto, M. and Okakura, T., "Oil Production from Algal Cells of Dunaliella Tertiolecta by Direct Thermochemical Liquefaction," Fuel, 74(12), 1735-1738(1995).
  2. Jo, B. H. and Cha, H. J., "Biodiesel Production using Microalgal Marine Biomass," KSBB, 25, 109-115(2010).
  3. Meher, L., Vidyasagar, D. and Naik, S., "Technical Aspects of Biodiesel Production by Transesterification-a Review," Renew. Sustain. Energy Rev., 10(3), 248-268(2006). https://doi.org/10.1016/j.rser.2004.09.002
  4. Marchetti, J. M., Miguel, V. U. and Errazu, A. F., "Possible Methods for Biodiesel Production," Renew. Sustain. Energy Rev., 11(6), 1300-1311(2007). https://doi.org/10.1016/j.rser.2005.08.006
  5. Canakci, M., "The Potential of Restaurant Waste Lipids as Biodiesel Feedstocks," Bioresour. Technol., 98(1), 183-190(2007). https://doi.org/10.1016/j.biortech.2005.11.022
  6. Fukuda, H., Kondo, A. and Noda, H., "Biodiesel Fuel Production by Transesterification of Oils," J. Biosci. Bioeng., 92(5), 405-416(2001). https://doi.org/10.1016/S1389-1723(01)80288-7
  7. Mata, T. M., Martins, A. A. and Caetano, N. S., "Microalgae for Biodiesel Production and Other Applications: A Review," Renew. Sustain. Energy Rev., 14(1), 217-232(2010). https://doi.org/10.1016/j.rser.2009.07.020
  8. Wahlen, B. D., Willis, R. M. and Seefeldt, L. C., "Biodiesel Production by Simultaneous Extraction and Conversion of Total Lipids from Microalgae, Cyanobacteria, and Wild Mixed-cultures," Bioresour. Technol., 102(3), 2724-2730(2011). https://doi.org/10.1016/j.biortech.2010.11.026
  9. Nigam, P. S. and Singh, A., "Production of Liquid Biofuels from Renewable Resources," Prog. Energy Combust. Sci., 37(1), 52-68(2011). https://doi.org/10.1016/j.pecs.2010.01.003
  10. Spolaore, P., Joannis-Cassan, C., Duran, E. and Isambert, A., "Commercial Applications of Microalgae," J. Biosci. Bioeng., 101(2), 87-96(2006). https://doi.org/10.1263/jbb.101.87
  11. Kim, D. G. and Choi, Y.-E., "Microalgae Cultivation Using LED Light," Korean Chem. Eng. Res., 52(1), 8-16(2014). https://doi.org/10.9713/kcer.2014.52.1.8
  12. John, R. P., Anisha, G. S., Nampoothiri, K. M. and Pandey, A., "Micro and Macroalgal Biomass: a Renewable Source for Bioethanol," Bioresour. Technol., 102(1), 186-193(2011). https://doi.org/10.1016/j.biortech.2010.06.139
  13. Xin, L., Hu, H., Ke, G. and Sun, Y., "Effects of Different Nitrogen and Phosphorus Concentrations on the Growth, Nutrient Uptake, and Lipid Accumulation of a Freshwater Microalga Scenedesmus sp.," Bioresour. Technol., 101(14), 5494-5500(2010). https://doi.org/10.1016/j.biortech.2010.02.016
  14. Yoo, S. J., Oh, S.-K. and Lee, J. M., "Sensitivity Analysis with Optimal Input Design and Model Predictive Control for Microalgal Bioreactor Systems," Korean Chem. Eng. Res., 51(1), 87-92(2013). https://doi.org/10.9713/kcer.2013.51.1.87
  15. Renaud, S. M., Thinh, L.-V., Lambrinidis, G. and Parry, D. L., "Effect of Temperature on Growth, Chemical Composition and Fatty Acid Composition of Tropical Australian Microalgae Grown in Batch Cultures," Aquaculture, 211, 195-214(2002). https://doi.org/10.1016/S0044-8486(01)00875-4
  16. Sharma, Y. C., Singh, B. and Upadhyay, S. N., "Advancements in Development and Characterization of Biodiesel: A Review," Fuel, 87(12), 2355-2373(2008). https://doi.org/10.1016/j.fuel.2008.01.014
  17. Demirbas, A. and Demirbas, M. F., "Importance of Algae Oil as a Source of Biodiesel," Energy Convers. Manage., 52, 163-170(2011). https://doi.org/10.1016/j.enconman.2010.06.055
  18. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Selbert, M. and Darzins, A., "Microalgal Triacylglycerols as Feedstocks for Biofuel Production: Perspectives and Advances," Plant J., 54, 621-639(2008). https://doi.org/10.1111/j.1365-313X.2008.03492.x