• Title/Summary/Keyword: failure risk

Search Result 1,524, Processing Time 0.038 seconds

A Risk Metric for Failure Cause in FMEA under Time-Dependent Failure Occurrence and Detection (FMEA에서 고장발생 및 탐지시간을 고려한 고장원인의 위험평가 척도)

  • Kwon, Hyuck Moo;Hong, Sung Hoon;Lee, Min Koo
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.571-582
    • /
    • 2019
  • Purpose: To develop a risk metric for failure cause that can help determine the action priority of each failure cause in FMEA considering time sequence of cause- failure- detection. Methods: Assuming a quadratic loss function the unfulfilled mission period, a risk metric is obtained by deriving the failure time distribution. Results: The proposed risk metric has some reasonable properties for evaluating risk accompanied with a failure cause. Conclusion: The study may be applied to determining action priorities among all the failure causes in the FMEA sheet, requiring further studies for general situation of failure process.

Risk Factors to Predict Acute Respiratory Failure in Patients with Acute Pesticide Poisoning (급성 농약 중독환자에서 호흡 부전 발생의 위험 인자)

  • Cho, Nam-Jun;Park, Samel;Lee, Eun Young;Gil, Hyo-Wook
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.18 no.2
    • /
    • pp.116-122
    • /
    • 2020
  • Acute respiratory failure is an important risk factor for mortality in patients with acute pesticide poisoning. Therefore, it is necessary to investigate the risk factors to predict respiratory failure in these patients. This study retrospectively investigated the clinical features of respiratory failure among patients with acute pesticide poisoning requiring mechanical ventilation. This study included patients who were admitted with intentional poisoning by pesticide ingestion from January 2017 to December 2019. Paraquat intoxication was excluded. Among 469 patients with acute pesticide poisoning, 398 patients were enrolled in this study. The respiratory failure rate was 30.4%. The rate of respiratory failure according to the type of pesticide was carbamate (75.0%), organophosphate (52.6%), glufosinate (52.1%), glyphosate (23%), pyrethroid (8.9%), and others (17%). The mortality was 25.6% in the respiratory failure group. The risk factors for respiratory failure were old age, low body mass index, and ingestion of more than 300 mL. In conclusion, respiratory failure is a risk factor for mortality in pesticide poisoning. Old age, low body mass index, and ingestion of more than 300 mL are the risk factors for predicting respiratory failure.

Analysis of Risk Priority Number for Grid-connected Energy Storage System (계통연계형 에너지저장시스템의 위험우선순위 분석)

  • Kim, Doo-Hyun;Kim, Sung-Chul;Park, Jeon-Su;Kim, Eun-Jin;Kim, Eui-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.10-17
    • /
    • 2016
  • The purpose of this paper is to deduct components that are in the group of highest risk(top 10%). the group is conducted for classification into groups by values according to risk priority through risk priority number(RPN) of FMEA(Failure modes and effects analysis) sheet. Top 10% of failure mode among total potential failure modes(72 failure modes) of ESS included 5 BMS(battery included) failure modes, 1 invert failure mode, and 1 cable connectors failure mode in which BMS was highest. This is because ESS is connected to module, try, and lack in the battery part as an assembly of electronic information communication and is managed. BMS is mainly composed of the battery module and communication module. There is a junction box and numerous connectors that connect these two in which failure occurs most in the connector part and module itself. Finally, this paper proposes RPN by each step from the starting step of ESS design to installation and operation. Blackouts and electrical disasters can be prevented beforehand by managing and removing the deducted risk factors in prior.

Risk Evaluation Based on the Time Dependent Expected Loss Model in FMEA (FMEA에서 시간을 고려한 기대손실모형에 기초한 위험 평가)

  • Kwon, Hyuck-Moo;Hong, Sung-Hoon;Lee, Min-Koo;Sutrisno, Agung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.104-110
    • /
    • 2011
  • In FMEA, the risk priority number(RPN) is used for risk evaluation on each failure mode. It is obtained by multiplying three components, i.e., severity, occurrence, and detectability of the corresponding failure mode. Each of the three components are usually determined on the basis of the past experience and technical knowledge. But this approach is not strictly objective in evaluating risk of a given failure mode and thus provide somewhat less scientific measure of risk. Assuming a homogeneous Poisson process for occurrence of the failures and causes, we propose a more scientific approach to evaluation of risk in FMEA. To quantify severity of each failure mode, the mission period is taken into consideration for the system. If the system faces no failure during its mission period, there are no losses. If any failure occurs during its mission period, the losses corresponding to the failure mode incurs. A longer remaining mission period is assumed to incur a larger loss. Detectability of each failure mode is then incorporated into the model assuming an exponential probability law for detection time of each failure cause. Based on the proposed model, an illustrative example and numerical analyses are provided.

Risk Evaluation of Failure Cause for FMEA under a Weibull Time Delay Model (와이블 지연시간 모형 하에서의 FMEA를 위한 고장원인의 위험평가)

  • Kwon, Hyuck Moo;Lee, Min Koo;Hong, Sung Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.83-91
    • /
    • 2018
  • This paper suggests a weibull time delay model to evaluate failure risks in FMEA(failure modes and effects analysis). Assuming three types of loss functions for delayed time in failure cause detection, the risk of each failure cause is evaluated as its occurring frequency and expected loss. Since the closed form solution of the risk metric cannot be obtained, a statistical computer software R program is used for numerical calculation. When the occurrence and detection times have a common shape parameter, though, some simple results of mathematical derivation are also available. As an enormous quantity of field data becomes available under recent progress of data acquisition system, the proposed risk metric will provide a more practical and reasonable tool for evaluating the risks of failure causes in FMEA.

Risk Evaluation in FMEA when the Failure Severity Depends on the Detection Time (FMEA에서 고장 심각도의 탐지시간에 따른 위험성 평가)

  • Jang, Hyeon Ae;Yun, Won Young;Kwon, Hyuck Moo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.136-142
    • /
    • 2016
  • The FMEA is a widely used technique to pre-evaluate and avoid risks due to potential failures for developing an improved design. The conventional FMEA does not consider the possible time gap between occurrence and detection of failure cause. When a failure cause is detected and corrected before the failure itself occurs, there will be no other effect except the correction cost. But, if its cause is detected after the failure actually occurs, its effects will become more severe depending on the duration of the uncorrected failure. Taking this situation into account, a risk metric is developed as an alternative to the RPN of the conventional FMEA. The severity of a failure effect is first modeled as linear and quadratic severity functions of undetected failure time duration. Assuming exponential probability distribution for occurrence and detection time of failures and causes, the expected severity is derived for each failure cause. A new risk metric REM is defined as the product of a failure cause occurrence rate and the expected severity of its corresponding failure. A numerical example and some discussions are provided for illustration.

The Case Study on Risk Assessment and Probability of Failure for Port Structure Reinforced by DCM Method (심층혼합처리공법이 적용된 항만 구조물의 파괴확률과 위험도 평가에 관한 사례 연구)

  • Kim, Byung Il;Park, Eon Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.53-64
    • /
    • 2018
  • In this study, the evaluation to probability of failure for risk assessment of port structures on DCM reinforced soils, where stability and risk assessment are increasing in importance, was performed. As a random variables affecting the risk of DCM improved ground, the design strength, superposition (overlap) of construction, strength of the natural ground, internal friction angle and unit weight of the modified ground were selected and applied to the risk assessment. In addition, the failure probability for the entire system under ordinary conditions and under earthquake conditions were analyzed. As a result, it was found that the highest coefficient of variation in the random variable for the risk assessment of the DCM improved ground is the design strength, but this does not have a great influence on the safety factor, ie, the risk of the system. The main risk factor for the failure probability of the system for the DCM reinforced soils was evaluated as horizontal sliding in case of external stability and compression failure in case of internal stability both at ordinary condition and earthquake condition. In addition, the failure probability for ordinary horizontal sliding is higher than that for earthquake failure, and the failure probability for ordinary compression failure is lower than that for earthquake failure. The ordinary failure probability of the entire system is similar to the failure probability on earthquake condition, but in this case, the risk of earthquake is somewhat higher.

Risk Evaluation Based on the Hierarchical Time Delay Model in FMEA (FMEA에서 계층적 시간 지연 모형에 근거한 위험평가)

  • Jang, Hyeon Ae;Lee, Min Koo;Hong, Sung Hoon;Kwon, Hyuck Moo
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.2
    • /
    • pp.373-388
    • /
    • 2016
  • Purpose: This paper suggests a hierarchical time delay model to evaluate failure risks in FMEA(failure modes and effects analysis). In place of the conventional RPN(risk priority number), a more reasonable and objective risk metric is proposed under hierarchical failure cause structure considering time delay between a failure mode and its causes. Methods: The structure of failure modes and their corresponding causes are analyzed together with the time gaps between occurrences of causes and failures. Assuming the severity of a failure depends on the length of the delayed time for corrective action, a severity model is developed. Using the expected severity, a risk priority metric is defined. Results: For linear and quadratic types of severity, nice forms of expected severity are derived and a meaningful metric for risk evaluation is defined. Conclusion: The suggested REM(risk evaluation metric) provides a more reasonable and objective risk measure than the conventional RPN for FMEA.

A novel risk assessment approach for data center structures

  • Cicek, Kubilay;Sari, Ali
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.471-484
    • /
    • 2020
  • Previous earthquakes show that, structural safety evaluations should include the evaluation of nonstructural components. Failure of nonstructural components can affect the operational capacity of critical facilities, such as hospitals and fire stations, which can cause an increase in number of deaths. Additionally, failure of nonstructural components may result in economic, architectural, and historical losses of community. Accelerations and random vibrations must be under the predefined limitations in structures with high technological equipment, data centers in this case. Failure of server equipment and anchored server racks are investigated in this study. A probabilistic study is completed for a low-rise rigid sample structure. The structure is investigated in two versions, (i) conventional fixed-based structure and (ii) with a base isolation system. Seismic hazard assessment is completed for the selected site. Monte Carlo simulations are generated with selected parameters. Uncertainties in both structural parameters and mechanical properties of isolation system are included in simulations. Anchorage failure and vibration failures are investigated. Different methods to generate fragility curves are used. The site-specific annual hazard curve is used to generate risk curves for two different structures. A risk matrix is proposed for the design of data centers. Results show that base isolation systems reduce the failure probability significantly in higher floors. It was also understood that, base isolation systems are highly sensitive to earthquake characteristics rather than variability in structural and mechanical properties, in terms of accelerations. Another outcome is that code-provided anchorage failure limitations are more vulnerable than the random vibration failure limitations of server equipment.

Failure Probability Assessment for Risk Analysis of Concrete Gravity Dam under Flood (홍수 시 콘크리트 중력식댐의 위험도 분석을 위한 파괴확률 산정)

  • Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han;Lim, Jeong-Yeul
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.6
    • /
    • pp.58-66
    • /
    • 2016
  • This study aims to estimate the failure probability of concrete gravity dams for their risk analysis under flood situation. To the end, failure modes of concrete gravity dams and their limit state functions are proposed based on numerous review of domestic and international literatures on the dam failure cases and design standards. Three failure modes are proposed: overturning, sliding, and overstress. Based on the failure modes the limit state functions, the failure probability is assessed for a weir section and a non-weir section of a dam in Korea. As water level is rising from operational condition to extreme flood condition, the failure probability is found to be raised up to the warning condition, especially for overturning mode at the non-weir section. The result can be used to reduce the risk of the dam by random environmental variables under possible flood situation.