• 제목/요약/키워드: failure load

검색결과 3,065건 처리시간 0.027초

클램핑 포스가 존재하는 복합재료 체결부의 파손강도 예측 (Failure load prediction of mechanically fastened composite joint with the clamping force)

  • 류충오;최진호;권진회
    • Composites Research
    • /
    • 제18권5호
    • /
    • pp.9-14
    • /
    • 2005
  • 복합재 구조물에서 체결부위는 매우 취약한 부분이므로 복합재료 체결부에 대한 설계는 중요한 연구분야로 대두되고 있다. 본 논문에서는 클램핑 포스가 존재하는 복합재료 기계적 체결부의 파손강도를 파괴면적지수법으로 예측하였다. 클램핑 포스가 존재하는 기계적 체결부의 파손강도를 파괴면적지수법으로 예측한 결과, $22.5\%$ 범위 내에서 체결부의 강도를 예측할 수 있었다.

탄소섬유쉬트로 전단보강한 RC 기둥의 이력성능평가에 관한 실험적 연구 (An Experimental Study on the Hysteretic Capacity Evaluation of the Shear-Strengthened RC Column with Carbon Fiber Sheet)

  • 이현호;구은숙
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 봄 학술발표회 논문집(I)
    • /
    • pp.750-755
    • /
    • 1999
  • When the RC frame structures subjected to the seismic load, brittle shear failure of vertical members induces brittle collapse of whole structures. Failure mechanism like this is not desirable. So shear strengthening method to avoid this failure mechanism is needed. Recently, strengthening method using continuous fiber sheet is studied and used widely which have high elastic and high strength characteristics. In this study, RC columns which is strengthened by carbon fiber sheet in the form of tape or whole sheet were tested under the cyclic load. The parameter of this test is the amount of strengthening. As the amount of strengthening increase, strength, ductility and energy capacity increase. The failure mode of test results are shear and bond-split failure.

  • PDF

Strain localization and failure load predictions of geosynthetic reinforced soil structures

  • Alsaleh, Mustafa;Kitsabunnarat, Akadet;Helwany, Sam
    • Interaction and multiscale mechanics
    • /
    • 제2권3호
    • /
    • pp.235-261
    • /
    • 2009
  • This study illustrates the differences between the elasto-plastic cap model and Lade's model with Cosserat rotation through the analyses of two large-scale geosynthetic-reinforced soil (GRS) retaining wall tests that were brought to failure using a monotonically increasing surcharge pressure. The finite element analyses with Lade's model were able to reasonably simulate the large-scale plane strain laboratory tests. On average, the finite element analyses gave reasonably good agreement with the experimental results in terms of global performances and shear band occurrences. In contrast, the cap model was not able to simulate the development of shear banding in the tests. In both test simulations the cap model predicted failure loads that were substantially less than the measured ones.

충격 하중을 받는 폼 코어 샌드위치 빔의 파괴 모드 연구 (Failure modes of foam core sandwich beams under impact loads)

  • 임태성;이창섭;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.135-138
    • /
    • 2003
  • Recently, sandwich structures have been widely employed in load bearing structures due to their high specific stiffness and high specific strength. Some sandwich structures are subjected to not only static loads but also impact loads which might induce failure of structures at far less load than expected. Since sandwich structures can fail in various modes, estimation of the impact energy absorption is difficult. In this work, the impact failure modes and the impact energy absorption characteristics of the sandwich beams were predicted by the FE analysis and confirmed by the impact test. From the analytic and experimental results, the impact failure mode map was constructed with respect to non-dimensional parameters.

  • PDF

전철용 보호계전기 시스템에 관한 연구 (A Study on Railway Electric Traction Protection System)

  • 이희용;김왕곤;이종우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.1390-1395
    • /
    • 2004
  • Recently, the load increasement and new regenerative systems of electrified railway system make it a difficult to distinguish between the load current and fault current. The failure of traction system perhaps causes over-current to flow. The high current can collapse other railway systems. If failures of the traction system takes place, the failures are detected and protected lest it should provoke high current flow. The over current from such a traction system failure permit to charge high tension voltage and produces high temperature arc, voltage instability, current cutting, and break down railway systems. The traction system failures detect and the system has to immediately cut off from over-current flow. To isolate the failure, the system can distinguish failure current from current flows. It forces us to adapt such as a new intelligent protection system. The protective system in traction system play a role of detecting and isolating failure points. In this paper, we proposed intelligent algorithm for discriminating normal and abnormal situation instead of the system being operated abnormally.

  • PDF

복합재 박막 구조물의 압축강도 예측 (Predicting the Compressive Strength of Thin-walled Composite Structure)

  • 김성준;이동건
    • 한국항공운항학회지
    • /
    • 제27권2호
    • /
    • pp.9-15
    • /
    • 2019
  • The initial buckling of thin walled structures does not result in immediate failure. This post buckling capability is used to achieve light weight design, and final failure of thin walled structure is called crippling. To predict the failure load, empirical methods are often used for thin walled structures in design stage. But empirical method accuracy depend on geometry. In this study, experimental, empirical and numerical study of the crippling behavior of I-section beam made of carbon-epoxy are performed. The progressive failure analysis model to simulate the crippling failure is evaluated using the test results. In this study, commercial software LS-DYNA is utilized to compute the collapse load of composite specimen. Six kinds of specimens were tested in axial compression where correlation between analytical and experimental results has performed. From the results, we have partially conclude that the flange width-to-thickness ratio is found to influence the accuracy of empirical and numerical method.

Using XFEM technique to predict the damage of unidirectional CFRP composite notched under tensile load

  • Benzaama, A.;Mokhtari, M.;Benzaama, H.;Gouasmi, S.;Tamine, T.
    • Advances in aircraft and spacecraft science
    • /
    • 제5권1호
    • /
    • pp.129-139
    • /
    • 2018
  • The composite materials are widely used in aircraft structures. Their relative rigidity/weight gives them an important advantage over the metal structures. The objective of this work is to analyze by the finite element method the mechanical behavior of composite plate type notched with various forms under tensile load. Two basic parameters were taken into consideration. The first, the form of the notch in order to see its effect on the stress and the failure load. The second, we studied the influence of the locale orientation of fiber around the plate's notch. These parameters are studied in order to see their effects on the distribution stress and failure load of the plate. The calculation of the failure load is determined numerically with the numerical code ABAQUS using the XFEM (extended Finite Element Modeling) based on the fracture mechanics. The result shows clearly that it is important to optimize the effect of fiber orientation around the notch.

강섬유를 혼입한 철근콘크리트 보의 전단기둥에 관한 실험적 연구 (An experimental Study on Shear Behavior of Reinforced Concrete Beams With Steel Fibrous)

  • 배주성;김경수;김재욱;최일
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.557-560
    • /
    • 1999
  • In civil engineering and construction field, recently the great enhancement of new material and building technique have been made by many studies and reports. These studies have attracted many countries, since 1980's those study on reinforcement with steel fiber have been done by America, Japan and the other countries. Designs and proposals on building method have been applied, several universities and laboratory centers in our country have been studied, but the study on field application is short. Also a part of study on the shear behavior of reinforced concrete beams with steel fiber has accomplished. but up to this time, reliable establishment is undone. Therefore, this study is performed the static loading test to analysis shear failure behavior in reinforced concrete beams with steel fiber. we have observed the limit load of shear force, primary bending crack load, primary diagonal crack load, evaluating relative of load and steel, crack increase and failure shape according to increase of load. Through the exam and the observation of output, we estimate the shear failure behavior of SFRC beams according to fiber mixing amount.

  • PDF

탄소섬유 복합재료의 AE 특성에 관한 연구 (A Study on the AE Characteristics of the Carbon Fiber Composite Material)

  • 옹장우;이영신;심봉식;지용관;주영상
    • 대한기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.105-114
    • /
    • 1989
  • 본 연구에서는 카본/에폭시 프리프렉으로부터 제작된 적층판을 사용하여 인장시험시 발생하는 AE특성과 파괴거동을 비교 검토하고 이들을 통하여 탄소섬유 복합재료의 파손특성과 AE법의 유용성을 규명하고자 한다.

CFS로 보강된 RC보의 가력상태에 따른 휨파괴 거동 (Flexural Failure Behaviour of RC Beams Strengthened by CFS according to Loading Condition)

  • 박성수;조수제
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제7권3호
    • /
    • pp.223-230
    • /
    • 2003
  • 본 연구의 목적은 탄소섬유쉬트(CFS)로 보강된 RC보의 보강시 상재하중의 유무에 따른 보강효과와 휨거동을 실험적으로 고찰하는 것이다. 실험변수는 인장철근비(0.85, 1.32, 1.91%)와 상재하중(무보강보의 항복내력의 80%)으로 한다. 보강보의 구조적 거동을 항복하중과 극한하중, 하중-중앙부 처짐 관계, 연성, 보강 효과의 항으로 비교하였다. 실험결과로부터, CFS로 보강된 RC보의 극한 내력과 휨파괴거동이 원부재와 부착된 CFS 간의 초기응력에 의해 변화하는 것으로 나타났다.