• Title/Summary/Keyword: fail safe

Search Result 143, Processing Time 0.024 seconds

A Study of Explosion Hazard Proof Modeling for Risk Minimization to Semiconductor & FPD Manufature Equipment and Clean Room (반도체·FPD 제조설비와 클린룸의 RISK 최소화를 위한 폭발위험장소 설정 모델링에 관한 연구)

  • Noh, HyunSeok;Woo, InSung;Hwang, MyungHwan;Woo, JungHwan
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.78-85
    • /
    • 2018
  • In this study, we analyzed risks of the fabrication process equipment and cleanroom for semiconductor/flat panel display (FPD) manufacturing facilities and studied the fundamental safety measures for the risk factors. We examined the explosion proof design models considering the specificity of equipment and environment, and planned to utilize the findings to provide technical standards and grounds for designing and manufacturing related equipment. We believe that this study will contribute to the establishment of technical standards for semiconductor/FPD industry and businesses in many different ways by providing optimized modeling of high-risk explosion site detection, developing safety standards and hazard countermeasures and voluntary activation of safety certification system for operation of fabrication process equipment.

A Result Analysis on Field Test for Localization Development of Axle Counter System (Axle Counter System 국산화 개발을 위한 현장시험 결과분석)

  • Ko, Joon-Young;Park, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6214-6220
    • /
    • 2015
  • A track circuit has used stably more than 100 years for detecting train position, but solution of track circuit sort circuit incapacity due to a rust is necessary for side line in station yard, coast line and level crossing for conventional line in rural line. Domestically, Axle Counter System(ACS) has partially used for Hot Box System for high speed line and turnout for CBTC system. In contrast, most of countries has used ACS not only trunk line but also rural line and its application has increased for metro, electric car and industrial railway. In this paper, we has verified the operating status of ACS which installed with existing track circuit through log analsis to implement pilot application in mail track and turnout in station yard. And interface test with interlocking system has conducted at Obong shunting yard, as well as Cheongju station and has analyzed test result. Based on a test result, we made fail safe design, manufacturing skill and established system requirement specification for the smooth operation and maintenance.

Factors Related to Positive Psychological Capital among Korean Clinical Nurses: A Systematic Review and Meta-Analysis (국내 임상간호사의 긍정심리자본 관련 요인: 체계적 문헌고찰 및 메타분석)

  • Lee, Byung Yup;Jung, Hyang Mi
    • Journal of Korean Clinical Nursing Research
    • /
    • v.25 no.3
    • /
    • pp.221-236
    • /
    • 2019
  • Purpose: The purpose of this study was to systematically review and identify factors relevant to the positive psychological capital of clinical nurses. Methods: These was no limit on year of publication. Articles related to Korean clinical nurses were retrieved from computerized database using a manual search. A systematic review was conducted based on the PRISMA flow. The total correlational effect size (ESr) for each related factor was calculated from Fisher's Zr. Funnel plots, fail-safe numbers, and Egger regression tests were used to evaluate publication bias in meta-analysis studies. The correlational effect size of 25 studies was analyzed through meta-analysis using Comprehensive Meta-Analysis software 3.0 (CMA). Results: The review included 25 studies. In the systematic review, 14 demographic factors and 46 organizational factors were found to be influential. Eleven factors (6 demographic factors and 5 organizational factors) were appropriate for meta-analysis. The overall effect size was .26. The demographic total correlation effect size of related factors was .20 and the total effect size of organization was .46. Organizational commitment (ESr=.38) and job satisfaction (ESr=.54) were statistically positively related variables. Negative variables were burnout (ESr=-.61), turnover intention (ESr=-.41) and workplace bullying (ESr=-.33). The total effect size of the organizational factors was larger than the demographic total effect size. There was no publication bias except for demographic variables. Conclusion: Organizational factors and adjustable variables have a significant impact on positive psychological capital. The results of this study support the need for development of interventions focusing on organizational factors.

Experimental Study on the Drawbar Pull and Structural Safety of an Onion Harvester Attached to a Tractor (트랙터 부착형 양파수확기의 작업 속도에 따른 견인 부하와 구조 안정성에 관한 실험적 연구)

  • Shin, Chang-Seop;Kim, Jun-Hee;Ha, Yu-Shin;Park, Tusan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.16-25
    • /
    • 2019
  • Recently, due to labor shortages in rural areas within South Korea, the demand for upland-field machinery is growing. In addition, there is a lack of development of systematic performance testing of upland-field machinery. Thus, this study examined structural safety and drawbar pull based on soil properties, as a first step for systematic performance testing on the test bed. First, the properties of soil samples from 10 spots within the experimental site were examined. Second, the strain was measured and converted into stress on 8 points of an onion harvester that are likely to fail. More specifically, the chosen parts are linked to the power, along with the drawbar pull, using a 6-component load cell equipped between the tractor and the onion harvester. The water content of the soil ranged between 5.7%-7.5%, and the strength between 250-1171 kPa. The test soil was subsequently classified into loam soil based on the size distribution ratio of the sieved soil. The onion harvester can be considered as structurally safe based on the derived safety factor and the drawbar pull of 115-1194 kgf, according to the working speed based on agricultural fieldwork.

Configuration assessment of MR dampers for structural control using performance-based passive control strategies

  • Wani, Zubair R.;Tantray, Manzoor A.;Iqbal, Javed;Farsangi, Ehsan Noroozinejad
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.329-344
    • /
    • 2021
  • The use of structural control devices to minimize structural response to seismic/dynamic excitations has attracted increased attention in recent years. The use of magnetorheological (MR) dampers as a control device have captured the attention of researchers in this field due to its flexibility, adaptability, easy control, and low power requirement compared to other control devices. However, little attention has been paid to the effect of configuration and number of dampers installed in a structure on responses reduction. This study assesses the control of a five-story structure using one and two MR dampers at different stories to determine the optimal damper positions and configurations based on performance indices. This paper also addresses the fail-safe current value to be applied to the MR damper at each floor in the event of feedback or control failure. The model is mathematically simulated in SIMULINK/MATLAB environment. Linear control strategies for current at 0 A, 0.5 A, 1 A, 1.5 A, 2 A, and 2.5 A are implemented for MR dampers, and the response of the structure to these control strategies for different configurations of dampers is compared with the uncontrolled structure. Based on the performance indices, it was concluded that the dampers should be positioned starting from the ground floor, then the 2nd floor followed by 1st and rest of the floors sequentially. The failsafe value of current for MR dampers located in lower floors (G+1) should be kept at a higher value compared to dampers at top floors for effective passive control of multi-story structures.

Development and Validation of an Integrated Healthy Workplace Management Model in Taiwan

  • Fu-Li Chen;Peter Y. Chen;Chi-Chen Chen;Tao-Hsin Tung
    • Safety and Health at Work
    • /
    • v.13 no.4
    • /
    • pp.394-400
    • /
    • 2022
  • Background: Impacts of exposure are generally monitored and recorded after injuries or illness occur. Yet, absence of conventional after-the-effect impacts (i.e., lagging indicators), tend to focus on physical health and injuries, and fail to inform if workers are not exposed to safety and health hazards. In contrast to lagging indicators, leading indicators are proactive, preventive, and predictive indexes that offer insights how effective safety and health. The present study is to validate an extended Voluntary Protection Programs (VPP) that consists of six leading indicators. Methods: Questionnaires were distributed to 13 organizations (response rate = 93.1%, 1,439 responses) in Taiwan. Cronbach α, multiple linear regression and canonical correlation were used to test the reliability of the extended Voluntary Protection Programs (VPP) which consists of six leading indicators (safe climate, transformational leadership, organizational justice, organizational support, hazard prevention and control, and training). Criteria-related validation strategy was applied to examine relationships of six leading indicators with six criteria (perceived health, burnout, depression, job satisfaction, job performance, and life satisfaction). Results: The results showed that the Cronbach's α of six leading indicators ranged from 0.87 to 0.92. The canonical correlation analysis indicated a positive correlation between the six leading indicators and criteria (1st canonical function: correlation = 0.647, square correlation = 0.419, p < 0.001). Conclusions: The present study validates the extended VPP framework that focuses on promoting safety and physical and mental health. Results further provides applications of the extended VPP framework to promote workers' safety and health.

A Study on Safety and Performance of Rope Cutter for Ship's Propeller (선박추진기 로프절단장치의 안전성 및 효용성에 관한 연구)

  • Lee, Won-Ju;Kim, Jong-Ho;Jang, Se-Hyun;Lee, Kyoung-Woo;Kim, Bo-Young;Lee, Woo-Kun;Rho, Beom-Seok;Kim, Jun-Soo;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.475-481
    • /
    • 2018
  • In this study, the safety and effectiveness of ope cutter, developed to prevent frequent accident propeller windingness at sea. First, we calculated the bolt strength of the three types of rope cutting devices used in the experiment and the torsional stresses on the shafting system theoretical equation and the finite element method. As a result, the bolts used in the rope cutter confirmed from the viewpoint of safety life design and fail safe design. Also, safety satisfactory because of the small effect on the shaft system when locking up. Experiments were carried out to cut ropes and fishing nets from the sea using the ships equipped with three types of rope cutters verified to be safe. As a result, ropes of 20 to 50 mm in thickness were generally cut. It was found that the cutting efficiency of a rope cutter attached to shafting decreased when cutting thick ropes.

Application of Predictive Microbiology for Microbiological Shelf Life Estimation of Fresh-cut Salad with Short-term Temperature Abuse (PMP 모델을 활용한 시판 Salad의 Short-term Temperature Abuse 시 미생물학적 유통기한 예측에의 적용성 검토)

  • Lim, Jeong-Ho;Park, Kee-Jea;Jeong, Jin-Woong;Kim, Hyun-Soo;Hwang, Tae-Young
    • Food Science and Preservation
    • /
    • v.19 no.5
    • /
    • pp.633-638
    • /
    • 2012
  • The aim of this study was to investigate the growth of aerobic bacteria in fresh-cut salad during short-term temperature abuse ($4{\sim}30^{\circ}C$temperature for 1, 2, and 3 h) for 72 h and to develop predictive models for the growth of total viable cells (TVC) based on Predictive food microbiology (PFM). The tool that was used, Pathogen Modeling program (PMP 7.0), predicts the growth of Aeromonas hydrophila (broth Culture, aerobic) at pH 5.6, NaCl 2.5%, and sodium nitrite 150 ppm for 72 h. Linear models through linear regression analysis; DMFit program were created based on the results obtained at 5, 10, 20, and $30^{\circ}C$ for 72 h ($r^2$ >0.9). Secondary models for the growth rate and lag time, as a function of storage temperature, were developed using the polynomial model. The initial contamination level of fresh-cut salad was 5.6 log CFU/mL of TVC during 72 h storage, and the growth rate of TVC was shown to be 0.020~1.083 CFU/mL/h ($r^2$ >0.9). Also, the growth tendency of TVC was similar to that of PMP (grow rate: 0.017~0.235 CFU/mL/h; $r^2=0.994{\sim}1.000$). The predicted shelf life with PMP was 24.1~626.5 h, and the estimated shelf life of the fresh-cut salads with short-term temperature abuse was 15.6~31.1 h. The predicted shelf life was more than two times the observed one. This result indicates a 'fail safe' model. It can be taken to a ludicrous extreme by adopting a model that always predicts that a pathogenic microorganism will grow even under conditions so strict as to be actually impossible.

A Study on the Effects of an Increase in the Height of Ship's Accommodation Area on Safe Evacuation in Emergency Situation (선박 거주구역의 높이가 피난안전에 미치는 영향에 대한 연구)

  • Kim, Won-Ouk;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.69-73
    • /
    • 2011
  • Unlike land fires, Fires on board a ship are not likely to be extinguished by skilled human resources using a variety of fire fighting equipments, but have to be brought under control on board a ship itself despite of difficult task. There are more cases of deaths from suffocation by smoke than from an increased temperature by heat in fires on board ships, because crew fail to secure a sufficient visibility range enough to escape from the scene of a fire or to leave the ship as early as possible. On the assumption that the height of ship's accommodation area increases from 2.0m to 2.3m comparable to the height of apartments on the ground in Korea, behaviors of fire smokes between the cases of 2.0m and 2.3m heights were compared and analyzed. Based on the blue print of the existing Training Ship "Hanbada", a new blueprint with the 30 cm height adjustment was additionally created. FDS (Fire Dynamic Simulator), which was created by the NIST in the United States and is the most widely distributed simulator for fires, was used to conduct a simulation and predict results. The results of simulation on the basis of temperature of $60^{\circ}C$ showed a safe evacuation period of time at the position 10m apart from the scene of a fire to increase by 55.8 seconds, when the height of ship's accommodation area increased from 2.0m to 2.3m. The results of simulation on the basis of visibility range of 6m showed the safe evacuation periods of time at the positions 10m, 20m and 30m apart from the scene of a fire to increase by 27.1 seconds, 109.2 seconds and 73.3 seconds, respectively, as the height of ship's accommodation area increased from 2.0m to 2.3m. This means that crew can escape more safely from a scene of fires on board when the height of ship's accommodation area is increased and equal to the height of living room in a building on land.

Rock Slope Stability Investigations Conducted on the Road Cut in Samrangjin-Miryang Area (삼량진-밀양 지역에 위치한 도로 절취사면에 대한 사면안정 연구)

  • Um Jeong-Gi;Kang Taeseung;Hwang Jin Yeon
    • Economic and Environmental Geology
    • /
    • v.38 no.3 s.172
    • /
    • pp.305-317
    • /
    • 2005
  • This study addresses the preliminary results of rock slope stability analyses including hazard assessments for slope failure conducted on the selected sections of rural road cut slope which are about 4 km long. The study area is located in the Mt. Chuntae northeast of Busan and mainly composed of Cretaceous rhyolitic ash-flow tuff', fallout tuff, rhyolitc and andesite. The volcanic rock mass in the area has a number of discontinuities that produce a potentially unstable slope, as the present cut slope is more than 70 degrees in most of the slope sections. Discontinuity geometry data were collected at selected 8 scanline sections and analyzed to estimate important discontinuity geometry parameters to perform rock slope kinematic and block theory analyses. Kinematic analysis for plane sliding has resulted in maximum safe slope angles greater than $65^{\circ}$ for most of the discontinuities. For most of the wedges, maximum safe cut slope angles greater than $45^{\circ}$ were obtained. Maximum safe slope angles greater than 80" were obtained fur most of the discontinuities in the toppling case. The block theory analysis resulted in the identification of potential key blocks (type II) in the SL4, SL5, SL6 and SL8 sections. The chance of sliding taking place through a type ll block under a combined gravitational and external loading is quite high in the investigated area. The results support in-field observations of a potentially unstable slope that could become hazardous under external forces. The results obtained through limit equilibrium slope stability analyses show how a stable slope can become an unstable slope as the water pressure acting on joints increases and how a stable slope under Barton's shear strength criterion can fail as the worst case scenario of using Mohr-Coulomb criterion.