• Title/Summary/Keyword: extreme value distribution

Search Result 259, Processing Time 0.034 seconds

The estimation of CO concentration in Daegu-Gyeongbuk area using GEV distribution (GEV 분포를 이용한 대구·경북 지역 일산화탄소 농도 추정)

  • Ryu, Soorack;Eom, Eunjin;Kwon, Taeyong;Yoon, Sanghoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.4
    • /
    • pp.1001-1012
    • /
    • 2016
  • It is well known that air pollutants exert a bad influence on human health. According to the United Nations Environment Program, 4.3 million people die from carbon monoxide and particulate matter annually from all over the world. Carbon monoxide is a toxic gas that is the most dangerous of the gas consisting of carbon and oxygen. In this paper, we used 1 hour, 6 hours, 12 hours, and 24 hours average carbon monoxide concentration data collected between 2004 and 2013 in Daegu Gyeongbuk area. Parameters of the generalized extreme value distribution were estimated by maximum likelihood estimation and L-moments estimation. An evalution of goodness of fitness also was performed. Since the number of samples were small, L-moment estimation turned out to be suitable for parameter estimation. We also calculated 5 year, 10 year, 20 year, and 40 year return level.

Value at Risk with Peaks over Threshold: Comparison Study of Parameter Estimation (Peacks over threshold를 이용한 Value at Risk: 모수추정 방법론의 비교)

  • Kang, Minjung;Kim, Jiyeon;Song, Jongwoo;Song, Seongjoo
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.483-494
    • /
    • 2013
  • The importance of financial risk management has been highlighted after several recent incidences of global financial crisis. One of the issues in financial risk management is how to measure the risk; currently, the most widely used risk measure is the Value at Risk(VaR). We can consider to estimate VaR using extreme value theory if the financial data have heavy tails as the recent market trend. In this paper, we study estimations of VaR using Peaks over Threshold(POT), which is a common method of modeling fat-tailed data using extreme value theory. To use POT, we first estimate parameters of the Generalized Pareto Distribution(GPD). Here, we compare three different methods of estimating parameters of GPD by comparing the performance of the estimated VaR based on KOSPI 5 minute-data. In addition, we simulate data from normal inverse Gaussian distributions and examine two parameter estimation methods of GPD. We find that the recent methods of parameter estimation of GPD work better than the maximum likelihood estimation when the kurtosis of the return distribution of KOSPI is very high and the simulation experiment shows similar results.

Frequency Analysis of Extreme Rainfall by L-Moments (L-모멘트법에 의한 극치강우의 빈도분석)

  • Maeng, Sung-Jin;Lee, Soon-Hyuk;Kim, Byung-Jun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.225-228
    • /
    • 2002
  • This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall in 38 Korean rainfall stations. To select the fit appropriate distribution of annual maximum daily rainfall data according to rainfall stations, applied were Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) probability distributions were applied. and their aptness was judged Dusing an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test, the aptitude was judged of applied distributions such as GEV, GLO and GPA. The GEV and GLO distributions were selected as the appropriate distributions. Their parameters were estimated Targetingfrom the observed and simulated annual maximum daily rainfalls and using Monte Carlo techniques, the parameters of GEV and GLO selected as suitable distributions were estimated and. dDesign rainfallss were then derived, using the L-moment. Appropriate design rainfalls were suggested by doing a comparative analysis of design rainfall from the GEV and GLO distributions according to rainfall stations.

  • PDF

Distribution of the Estimator for Peak of a Regression Function Using the Concomitants of Extreme Oder Statistics

  • Kim, S.H;Kim, T.S.
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.855-868
    • /
    • 1998
  • For a random sample of size n from general linear model, $Y_i= heta(X_i)+varepsilon_i,;let Y_{in}$ denote the ith oder statistics of the Y sample values. The X-value associated with $Y_{in}$ is denoted by $X_{[in]}$ and is called the concomitant of ith order statistics. The estimator of the location of a maximum of a regression function, $ heta$($\chi$), was proposed by (equation omitted) and was found the convergence rate of it under certain weak assumptions on $ heta$. We will discuss the asymptotic distributions of both $ heta(X_{〔n-r+1〕}$) and (equation omitted) when r is fixed as nolongrightarrow$\infty$(i.e. extreme case) on the basis of the theorem of the concomitants of order statistics. And the will investigate the asymptotic behavior of Max{$\theta$( $X_{〔n-r+1:n〕/}$ ), . , $\theta$( $X_{〔n:n〕}$)}as an estimator for the peak of a regression function.

  • PDF

Reliability analysis of LNG unloading arm considering variability of wind load (풍하중의 변동성을 고려한 LNG 하역구조물의 신뢰성해석)

  • Kim, Dong Hyawn;Lim, Jong Kwon;Koh, Jae Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.2
    • /
    • pp.223-231
    • /
    • 2007
  • Considering wind speed uncertainty, reliability analysis of the LNG unloading arm at Tongyoung Production Site was performed. Extreme distribution of wind speed was estimated from the data collected at the weather center and wind load was calculated using wind velocities and coefficients of wind pressure. The unloading arm was modeled with plate and solid elements. Contact elements were used to describe the interface between base of structure andground. Response surface for maximum effective stress was found for reliability analysis and then reliability functions was defined and used to determine exceeding probability of allowable and yield stresses. In addition, sensitivity analysis was also performed to estimate the effect of possible material deterioration in the future.

Frequency Analyses for Extreme Rainfall Data using the Burr XII Distribution (Burr XII 모형을 이용한 우리나라 극한 강우자료 빈도해석)

  • Seo, Jungho;Shin, Ju-Young;Jung, Younghun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.335-335
    • /
    • 2018
  • 최근 이상기후현상으로 지구상의 여러 지역에서 극치 수문 사상의 발생 빈도와 강도가 날로 증가하고 있는 추세이다. 이에 대해 수공구조물의 설계를 위한 극치강우사상의 빈도해석에 있어서 적절한 확률분포모형의 적용은 매우 중요하다. 이에 수문통계분야에서는 generalized extreme value(GEV), generalized logistic(GLO), Gumbel(GUM) 모형과 같은 극치 분포를 이용한 수문통계적 특성에 대한 접근이 주로 이루어지고 있다. 하지만 우리나라 강우 사상의 경우 GEV 분포와 GUM 분포가 비교적 적합한 것으로 알려져 있지만 하나의 형상매개변수를 가지고 있어 분포 모형이 표현할 수 있는 통계적 특성에 한계를 가지고 있다. 기존의 GEV나 GUM분포로는 적절히 재현되지 않는 자료들을 분석하기 위해서 두 개의 형상매개변수를 가지는 분포형에 대한 연구가 진행되고 있다. 이에 본 연구에서는 두 개의 형상매개변수를 가지는 Burr XII 분포형의 우리나라 극한 강우자료에 대한 적용성을 평가하였다. Burr XII 분포형은 gamma나 exponential 분포 모형처럼 양의 확률변수만을 가지고, Cauchy나 Pareto 분포 모형처럼 두꺼운 꼬리(heavy-tailed distribution) 형상을 나타내기 때문에 비교적 큰 확률변수가 빈번히 나타나는 극치사상에도 적합한 것으로 알려져 있다. 이를 위해 Burr XII 분포 모형을 이용하여 우리나라 강우자료에 대해 지점빈도해석 및 지역빈도해석을 수행하고 우리나라 강우자료에 비교적 적합하다고 알려진 분포인 GEV, GLO, GUM 분포형을 통해 산정된 결과와 비교하였다.

  • PDF

Assessment of New Design Wave by Spread Parameter and Expected Sliding Distance of Caisson Breakwater (확산모수와 제이슨방파제 기대활동량을 이용한 개정 설계파 분석)

  • Kim, Dong-Hyawn;Yoon, Gil-Lim;Shim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.146-150
    • /
    • 2007
  • Extreme value distributions for new deep sea wave were analyzed by using spread parameter and correlations between spread parameter and sliding distance of caisson breakwater were shown in numerical example. When spread parameter is larger than as usual, there occurred extra-ordinarily large wave height among 50 annual maximum significant waves generated by extreme value distribution. Spread parameter of new design wave is identified to be comparably larger than some foreign coastal areas and may cause large sliding displacement though deterministic safety factor for sliding is satisfied with enough margin.

Review of Classification Models for Reliability Distributions from the Perspective of Practical Implementation (실무적 적용 관점에서 신뢰성 분포의 유형화 모형의 고찰)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.195-202
    • /
    • 2011
  • The study interprets each of three classification models based on Bath-Tub Failure Rate (BTFR), Extreme Value Distribution (EVD) and Conjugate Bayesian Distribution (CBD). The classification model based on BTFR is analyzed by three failure patterns of decreasing, constant, or increasing which utilize systematic management strategies for reliability of time. Distribution model based on BTFR is identified using individual factors for each of three corresponding cases. First, in case of using shape parameter, the distribution based on BTFR is analyzed with a factor of component or part number. In case of using scale parameter, the distribution model based on BTFR is analyzed with a factor of time precision. Meanwhile, in case of using location parameter, the distribution model based on BTFR is analyzed with a factor of guarantee time. The classification model based on EVD is assorted into long-tailed distribution, medium-tailed distribution, and short-tailed distribution by the length of right-tail in distribution, and depended on asymptotic reliability property which signifies skewness and kurtosis of distribution curve. Furthermore, the classification model based on CBD is relied upon conjugate distribution relations between prior function, likelihood function and posterior function for dimension reduction and easy tractability under the occasion of Bayesian posterior updating.

Determination of Proper Probability Distribution for Groundwater Monitoring Stations in Jeju Island (제주도 지하수위 관측지점별 적정 확률분포형의 결정)

  • Chung, Il-Moon;Nam, Woosung;Kim, Min Gyu;Choi, Gian;Kim, Gee-Pyo;Park, Yun-Seok
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.1
    • /
    • pp.41-53
    • /
    • 2018
  • Comprehensive statistical analysis for the 127 groundwater monitoring stations in Jeju Island during 2005~2015 was carried out for the re-establishment of management groundwater level. Three probability distribution functions such as normal distibution, GEV (General Extreme Value) distribution, and Gumbel distribution were applied and the maximum likelihood method was used for parameter estimation of each distribution. AIC (Akaike information criterion) was calculated based on the estimated parameters to determine the proper probability distribution for all 127 stations. The results showed that normal distribution and Gumble distribution were found in 11 stations. Whereas GEV distribution were found in 105 stations, which covered most of groundwater monitoring stations. Therefore, confidence levels should be established in accord with the proper probability distribution when groundwater level management is determined.

Concept of Seasonality Analysis of Hydrologic Extreme Variables and Design Rainfall Estimation Using Nonstationary Frequency Analysis (극치수문자료의 계절성 분석 개념 및 비정상성 빈도해석을 이용한 확률강수량 해석)

  • Lee, Jeong-Ju;Kwon, Hyun-Han;Hwang, Kyu-Nam
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.8
    • /
    • pp.733-745
    • /
    • 2010
  • Seasonality of hydrologic extreme variable is a significant element from a water resources managemental point of view. It is closely related with various fields such as dam operation, flood control, irrigation water management, and so on. Hydrological frequency analysis conjunction with partial duration series rather than block maxima, offers benefits that include data expansion, analysis of seasonality and occurrence. In this study, nonstationary frequency analysis based on the Bayesian model has been suggested which effectively linked with advantage of POT (peaks over threshold) analysis that contains seasonality information. A selected threshold that the value of upper 98% among the 24 hours duration rainfall was applied to extract POT series at Seoul station, and goodness-fit-test of selected GEV distribution has been examined through graphical representation. Seasonal variation of location and scale parameter ($\mu$ and $\sigma$) of GEV distribution were represented by Fourier series, and the posterior distributions were estimated by Bayesian Markov Chain Monte Carlo simulation. The design rainfall estimated by GEV quantile function and derived posterior distribution for the Fourier coefficients, were illustrated with a wide range of return periods. The nonstationary frequency analysis considering seasonality can reasonably reproduce underlying extreme distribution and simultaneously provide a full annual cycle of the design rainfall as well.