DOI QR코드

DOI QR Code

The estimation of CO concentration in Daegu-Gyeongbuk area using GEV distribution

GEV 분포를 이용한 대구·경북 지역 일산화탄소 농도 추정

  • Ryu, Soorack (Department of Statistics, Daegu University) ;
  • Eom, Eunjin (Department of Statistics, Daegu University) ;
  • Kwon, Taeyong (Department of Statistics, Daegu University) ;
  • Yoon, Sanghoo (Department of Statistics and Computer Science, Daegu University)
  • 류수락 (대구대학교 대학원 통계학과) ;
  • 엄은진 (대구대학교 대학원 통계학과) ;
  • 권태용 (대구대학교 대학원 통계학과) ;
  • 윤상후 (대구대학교 전산통계학과)
  • Received : 2016.06.30
  • Accepted : 2016.07.19
  • Published : 2016.07.31

Abstract

It is well known that air pollutants exert a bad influence on human health. According to the United Nations Environment Program, 4.3 million people die from carbon monoxide and particulate matter annually from all over the world. Carbon monoxide is a toxic gas that is the most dangerous of the gas consisting of carbon and oxygen. In this paper, we used 1 hour, 6 hours, 12 hours, and 24 hours average carbon monoxide concentration data collected between 2004 and 2013 in Daegu Gyeongbuk area. Parameters of the generalized extreme value distribution were estimated by maximum likelihood estimation and L-moments estimation. An evalution of goodness of fitness also was performed. Since the number of samples were small, L-moment estimation turned out to be suitable for parameter estimation. We also calculated 5 year, 10 year, 20 year, and 40 year return level.

대기오염물질이 인간의 건강에 악영향을 미치는 사실은 잘 알려져 있다. 유엔 환경 계획 (united nations environment program; UNEP) 보고서에 따르면, 미세먼지와 일산화탄소 오염물질로 연간 전 세계에서 430만 명이 목숨을 잃었다. 일산화탄소는 탄소와 산소로 구성된 화합물로 가정에서 생성되는 독성 가스 중 가장 위험한 가스이다. 연구를 위하여 2004년부터 2013년까지 10년간 대구 경북 지역의 대기오염관측소에서 관측된 1시간, 6시간, 12시간, 24시간 평균 일산화탄소 농도 자료를 사용하였다. 일반화 극단치 분포의 모수는 최우추정법과 L-적률추정법을 통해 추정하였고 적합도 검정을 수행하였다. 본 연구의 표본 수가 크지 않으므로 L-적률추정법이 최대우도법에 비해 모수추정에 적합하였다. 또한, 5년, 10년, 20년, 40년 재현수준을 추정하여 대구 경북 지역 일산화탄소 위험지역을 살펴보았다.

Keywords

References

  1. Anderson, T. W. and Darling, D. A. (1952). Asymptotic theory of certain "Goodness of Fit" criteria based on stochastic processes. Annals of Mathematical Statistics, 23, 193-212. https://doi.org/10.1214/aoms/1177729437
  2. Fisher, R. A. and Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 180-190. https://doi.org/10.1017/S0305004100015681
  3. Gnedenko, B. V. (1943). Sur la distribution limite du terme maximum d'une serie aleatoire. Annals of Mathematics, 44, 423-453. https://doi.org/10.2307/1968974
  4. Greenwood, J. A., Landwehr, J. M., Matalas, N. C. and Wallis, J. R. (1979). Probability weighted moments: Definition and relation to parameters of several distributions expressable in inverse form. Water Resources Research, 15, 1049-1054. https://doi.org/10.1029/WR015i005p01049
  5. Hosking, J. R. M., Wallis, J. R. and Wood, E. F. (1985). Estimation of the generalised extreme value distribution by the method of probability weighted monents. Technometrics, 27, 251-261. https://doi.org/10.1080/00401706.1985.10488049
  6. Hosking, J. R. M. and Wallis, J. R. (1987). Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 29, 339-349. https://doi.org/10.1080/00401706.1987.10488243
  7. Hosking, J. R. M. (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society B, 52, 105-124.
  8. Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly Journal of the Royal Meteorological Society, 81, 158-171. https://doi.org/10.1002/qj.49708134804
  9. Kim, H. D. and Kim, H. T. (2015). Finding optimal portfolio based on genetic algorithm with generalized Pareto distribution. Journal of the Korean Data & Information Science Society, 26, 1479-1494. https://doi.org/10.7465/jkdi.2015.26.6.1479
  10. Kim, J. C., Park, C, R. and Kim, S. H. (2015). On the extreme value distribution of foreign exchange rates using L-moments. The Korean Journal Of Financial Engineering, 14, 1-33.
  11. Kim, Y. K. (2015). A hierarchical bayesian modeling of temporal trends in return levels for extreme precipitations. The Korean Journal of Applied Statistics, 28, 137-149. https://doi.org/10.5351/KJAS.2015.28.2.137
  12. Koh, D. K., Choo, T. H., Maeng, S. J. and Trivedi, C. (2008). Regional frequency analysis for rainfall using L-moment. The Journal of the Korea Contents Association, 8, 252-263.
  13. Longin, F. M. (1996). The asymptotic distribution of extreme stock market returns. Journal of Business, 69, 383-408. https://doi.org/10.1086/209695
  14. Longin, F. M. (2000). From value at risk to stress testing: The extreme value approach. Journal of Banking and Finance, 24, 1097-1130. https://doi.org/10.1016/S0378-4266(99)00077-1
  15. Prescott, P. and Walden, A. T. (1980). Maximum likeihood estimation of the parameters of the generalized extreme value distribution. Biometrika, 67, 723-724. https://doi.org/10.1093/biomet/67.3.723
  16. Shin, H. J., Sung, K. M. and Heo, J. H. (2010). Derivation of modified anderson-darling test statistics and power test for the gumbel distribution. Journal of Korea Water Resources Association, 43, 813-822. https://doi.org/10.3741/JKWRA.2010.43.9.813
  17. Sohn, K. T. and Liang, X. (2014). Estimation of return levels of typhoon best track data based on generalized extreme value distribution. Journal of the Korean Data Analysis Society, 16, 1259-1267.
  18. Smirnov, N. V. (1939). On the estimation of the discrepancy between empirical curves of distribution for two independent samples. Bulletin of Mathematical University of Moscow, 2, 3-16.
  19. Sung, Y. K. and Sohn, J. K. (2013). Prediction of extreme rainfall with a generalized extreme value distribution. Journal of theKorean Data & Information Science Society, 24, 857-865. https://doi.org/10.7465/jkdi.2013.24.4.857

Cited by

  1. 지진 재현수준 예측에 대한 로그-로지스틱 분포와 일반화 극단값 분포의 비교 vol.33, pp.1, 2016, https://doi.org/10.5351/kjas.2020.33.1.107