• 제목/요약/키워드: extreme ray

검색결과 52건 처리시간 0.031초

AN ALGORITHM FOR CHECKING EXTREMALITY OF ENTANGLED STATES WITH POSITIVE PARTIAL TRANSPOSES

  • Ha, Kil-Chan
    • 충청수학회지
    • /
    • 제23권4호
    • /
    • pp.609-616
    • /
    • 2010
  • We characterize extreme rays of the cone $\mathbb{T}$ of all positive semi-definite block matrices whose partial transposes are also positive semi-definite. We also construct an algorithm checking whether a given PPTES generates an extreme ray in the cone $\mathbb{T}$ or not. Using this algorithm, we give an example of $4{\otimes}4$ PPT entangle state of the type (5, 5), which generates extreme ray of the cone $\mathbb{T}$.

Efficiency Test in Possibilistic Multiobjective Linear Programming

  • Ida, Masaaki
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
    • /
    • pp.506-511
    • /
    • 1998
  • In this paper we consider multiobjective linear programming problems with coefficients of the objective functions specified by possibility distributions. Possibly and necessarily efficient solution sets are defined as funny solution sets whose membership grades represent possibility and necessity degrees to which a feasible solution is efficient. Considering efficiency condition and its dual condition in ordinary multiobjective linear programming problem, we propose efficiency test methods based on an extreme ray generation method. Since the proposed methods can be put in the part of a bi-section method, we can develop calculation and methods of the degree of possible and necessary efficiency for feasible solutions.

  • PDF

Determination of Optical Constants of Thin Films in Extreme Ultraviolet Wavelength Region by an Indirect Optical Method

  • Kang, Hee Young;Lim, Jai Dong;Peranantham, Pazhanisami;HwangBo, Chang Kwon
    • Journal of the Optical Society of Korea
    • /
    • 제17권1호
    • /
    • pp.38-43
    • /
    • 2013
  • In this study, we propose a simple and indirect method to determine the optical constants of Mo and ITO thin films in the extreme ultraviolet (EUV) wavelength region by using X-ray reflectometry (XRR) and Rutherford backscattering spectrometry (RBS). Mo and ITO films were deposited on silicon substrates by using an RF magnetron sputtering method. The density and the composition of the deposited films were evaluated from the XRR and RBS analysis, respectively and then the optical constants of the Mo and ITO films were determined by an indirect optical method. The results suggest that the indirect method by using the XRR and RBS analysis will be useful to search for suitable high absorbing EUVL mask material quickly.

Extreme Multi-Level Percutaneous Vertebroplasty for Newly Developed Multiple Adjacent Compression Fractures

  • Kim, Han-Woong;Song, Jae-Wook;Kwon, Austin;Kim, In-Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • 제45권6호
    • /
    • pp.378-380
    • /
    • 2009
  • Osteoporotic patients who undergo percutaneous vertebroplasty (PVP) have the risk of a repeated collapse of their adjacent vertebral body due to alteration of load transfer into the adjacent vertebral body. The authors have experienced a rare case of repeated osteoporotic vertebral compression fractures (VCF) resulting in extreme multi-level PVP. A 74-year-old female developed severe back pain after slipping down one month ago. Her X-ray and MR images indicated a T11 VCF. She underwent successful PVP with polymethylmethacrylate (PMMA). Two weeks later, she returned to our hospital due to a similar back pain. Repeated X-ray and MR images showed an adjacent VCF on T12. A retrial of PVP was performed on T12, which provided immediate pain relief. Since then, repeated collapses of the vertebral body occurred 12 times in 13 levels within a 24-month period. Each time the woman was admitted to our hospital, she was diagnosed of newly developed VCFs and underwent repeated PVPs with PMMA, which finally eased back pain. Based on our experience with this patient, repeated multiple PVP is not dangerous because its few and minor complications. Therefore, repeated PVP can serve as an effective treatment modality for extreme-multi level VCFs.

원위치 X-ray CT 촬영이 가능한 암석의 수리-역학 실험용 삼축셀 개발 (Development of Triaxial Cells Operable with In Situ X-ray CT for Hydro-Mechanical Laboratory Testing of Rocks)

  • 장리;염선;신휴성
    • 한국지반공학회논문집
    • /
    • 제36권9호
    • /
    • pp.45-55
    • /
    • 2020
  • X-ray CT는 암석시편의 공극 및 균열과 같은 내부 미세구조와 손상들의 정량적 분석에 활용되어 왔다. 원위치 CT는 외력 등 다양한 외적 요인에 영향을 받고 있는 암석 시편의 내외부 변화 과정을 관찰할 수 있게 해준다. 이의 확인을 위해, 암반/지반재료 특성분석에 활용한 원위치 X-ray CT 기술에 관한 최신 연구동향을 파악하였으며, 원위치 CT이미징이 가능한 암석의 수리-역학적 실험용 삼축셀을 개발하였다. 직경 25~50 mm 화강암 및 사암 코아시편의 원위치 CT이미징이 성공적으로 진행되었으며, 34~105 ㎛ 범위의 픽셀피치의 해상도를 취득할 수 있었다. 본 사전검토 촬영 실험을 통해 마이크로미터 스케일에서 암석의 내부구조 변화의 원위치 CT관찰이 가능한 것을 파악하였다. 요오드화 칼륨 용액은 CT이미지의 대비를 증가시키고 암석의 수리-역학 실험에서 주입유체로 사용할 수 있다.

MERGERS, COSMIC RAYS, AND NONTHERMAL PROCESSES IN CLUSTERS OF GALAXIES

  • SARAZIN CRAIG L.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.433-438
    • /
    • 2004
  • Clusters of galaxies generally form by the gravitational merger of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. The basic properties of cluster mergers and their effects are discussed. Mergers drive shocks into the intracluster gas, and these shocks heat the intracluster gas. As a result of the impulsive heating and compression associated with mergers, there is a large transient increase in the X-ray luminosities and temperatures of merging clusters. These merger boost can affect X-ray surveys of clusters and their cosmological interpretation. Similar boosts occur in the strong lensing cross-sections and Sunyaev-Zeldovich effect in merging clusters. Merger shock and turbulence associated with mergers should also (re)accelerate nonthermal relativistic particles. As a result of particle acceleration in shocks and turbulent acceleration following mergers, clusters of galaxies should contain very large populations of relativistic electrons and ions. Observations and models for the radio, extreme ultraviolet, hard X-ray, and gamma-ray emission from nonthermal particles accelerated in these shocks will also be described. Gamma-ray observations with GLAST seem particularly promising.

감압대기 및 불활성가스 분위기에서 적합한 정전기 제거장치의 개발 (Development of the Most Optimized Ionizer for Reduction in the Atmospheric Pressure and Inert Gas Area)

  • 이동훈;정필훈;이수환;김상효
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.42-46
    • /
    • 2016
  • In LCD Display or semiconductor manufacturing processes, the anti-static technology of glass substrates and wafers becomes one of the most difficult issues which influence the yield of the semiconductor manufacturing. In order to overcome the problems of wafer surface contamination various issues such as ionization in decompressed vacuum and inactive gas(i.e. $N_2$ gas, Ar gas, etc.) environment should be considered. Soft X ray radiation is adequate in air and $O_2$ gas at atmospheric pressure while UV radiation is effective in $N_2$ gas Ar gas and at reduced pressure. At this point of view, the "vacuum ultraviolet ray ionization" is one of the most suitable methods for static elimination. The vacuum ultraviolet can be categorized according to a short wavelength whose value is from 100nm to 200nm. this is also called as an Extreme Ultraviolet. Most of these vacuum ultraviolet is absorbed in various substances including the air in the atmosphere. It is absorbed substances become to transit or expose the electrons, then the ionization is initially activated. In this study, static eliminator based on the vacuum ultraviolet ray under the above mentioned environment was tested and the results show how the ionization performance based on vacuum ultraviolet ray can be optimized. These vacuum ultraviolet ray performs better in extreme atmosphere than an ordinary atmospheric environment. Neutralization capability, therefore, shows its maximum value at $10^{-1}{\sim}10^{-3}$ Torr pressure level, and than starts degrading as pressure is gradually reduced. Neutralization capability at this peak point is higher than that at reduced pressure about $10^4$ times on the atmospheric pressure and by about $10^3$ times on the inactive gas. The introductions of these technology make it possible to perfectly overcome problems caused by static electricity and to manufacture ULSI devices and LCD with high reliability.

Polyvilylidenefluoride-based Nanocomposite Films Induced-by Exfoliated Boron Nitride Nanosheets with Controlled Orientation

  • Cho, Hong-Baek;Nakayama, Tadachika;Jeong, DaeYong;Tanaka, Satoshi;Suematsu, Hisayuki;Niihara, Koichi;Choa, Yong-Ho
    • Composites Research
    • /
    • 제28권5호
    • /
    • pp.270-276
    • /
    • 2015
  • Polyvinylidene fluoride (PVDF)-based nanocomposites are fabricated by incorporation of boron nitride (BN) nanosheets with anisotropic orientation for a potential high thermal conducting ferroelectric materials. The PVDF is dissolved in dimethylformamide (DMF) and homogeneously mixed with exfoliated BN nanosheets, which is then cast into a polyimide film under application of high magnetic fields (0.45~10 T), where the direction of the filler alignment was controlled. The BN nanosheets are exfoliated by a mixed way of solvothermal method and ultrasonication prior to incorporation into the PVDF-based polymer suspension. X-ray diffraction, scanning electron microscope and thermal diffusivity are measured for the characterization of the polymer nanocomposites. Analysis shows that BN nanosheets are exfoliated into the fewer layers, whose basal planes are oriented either perpendicular or parallel to the composite surfaces without necessitating the surface modification induced by high magnetic fields. Moreover, the nanocomposites show a dramatic thermal diffusivity enhancement of 1056% by BN nanosheets with perpendicular orientation in comparison with the pristine PVDF at 10 vol % of BN, which relies on the degree of filler orientation. The mechanism for the magnetic field-induced orientation of BN and enhancement of thermal property of PVDF-based composites by the BN assembly are elucidated.

Understanding Explosive Stellar Events Using Rare Isotope Beams

  • Chae, Kyungyuk
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.66.1-66.1
    • /
    • 2017
  • Nuclear reactions in explosive stars such as novae, X-ray bursts, and supernovae are responsible for producing many of the elements that make up our world. Exotic nuclei not normally found on earth can play an important role in these events due to the extreme conditions that occur in the explosion. A frontier area of research involves utilizing beams of radioactive nuclei to improve our understanding of these explosions and the implications on cosmic element production. At the future radioactive ion beam facility of Korea, RAON, we will measure astrophysically important reactions using exotic beams to probe the details of cosmic events. Details of RAON and possible day-1 experiments at the facility will be presented.

  • PDF

High Mass X-ray Binary and IGOS with IGRINS

  • Chun, Moo-Young;Moon, Dae-Sik;Jeong, Ueejeong;Yu, Young Sam
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.95-95
    • /
    • 2014
  • The mass measurement of neutron stars or black holes is of fundamental importance in our understanding of the evolution of massive stars and core-collapse supernova explosions as well as some exotic physics of the extreme conditions. Despite the importance, however, it's very difficult to measure mass of these objects directly. One way to do this, if they are in binary systems, to measure their binary motions (i.e., Doppler shifts) which can give us direct information on their mass. Recently many new highly-obscured massive X-ray binaries have been discovered by new hard X-ray satellites such as INTEGRAL and NuSTAR. The new highly-obscured massive X-ray binaries are faint in the optical, but bright in the infrared with many emission lines. Based on the near-infrared spectroscopy, one can first understand the nature of stellar companions to the compact objects, determining its spectral types and luminosity classes as well as mass losses and conditions of (potential) circumstellar material. Next, spectroscopic monitoring of these objects can be used to estimate the mass of compact objects via measuring the Doppler shifts of the lines. For the former, broad-band spectroscopy is essential; for the latter, high-resolution spectroscopy is critical. Therefore, IGRINS appears to be an ideal instrument to study them. An IGRINS survey of these new highly-obscured massive X-ray binaries can give us a rare opportunity to carry out population analyses for understanding the evolution of massive binary systems and formation of compact objects and their mass ranges. In this talk, we will present a sample near-infrared high resolution spectra of HMXB, IGR J19140+0951 and discuss about its spectral feature. These spectra are obtained on 13th July, 2014 from IGRINS commissioning run at McDonald 2.7m telescope. And at final, we will introduce the upgrade plan of IGRINS Operation Software (IGOS), to gather the input from IGRINS observer.

  • PDF