DOI QR코드

DOI QR Code

MERGERS, COSMIC RAYS, AND NONTHERMAL PROCESSES IN CLUSTERS OF GALAXIES

  • SARAZIN CRAIG L. (Department of Astronomy, University of Virginia)
  • Published : 2004.12.01

Abstract

Clusters of galaxies generally form by the gravitational merger of smaller clusters and groups. Major cluster mergers are the most energetic events in the Universe since the Big Bang. The basic properties of cluster mergers and their effects are discussed. Mergers drive shocks into the intracluster gas, and these shocks heat the intracluster gas. As a result of the impulsive heating and compression associated with mergers, there is a large transient increase in the X-ray luminosities and temperatures of merging clusters. These merger boost can affect X-ray surveys of clusters and their cosmological interpretation. Similar boosts occur in the strong lensing cross-sections and Sunyaev-Zeldovich effect in merging clusters. Merger shock and turbulence associated with mergers should also (re)accelerate nonthermal relativistic particles. As a result of particle acceleration in shocks and turbulent acceleration following mergers, clusters of galaxies should contain very large populations of relativistic electrons and ions. Observations and models for the radio, extreme ultraviolet, hard X-ray, and gamma-ray emission from nonthermal particles accelerated in these shocks will also be described. Gamma-ray observations with GLAST seem particularly promising.

Keywords

References

  1. Bacchi, M., Feretti, L., Giovannini, G., & Govoni, F. 2003, A&A, 400, 465 https://doi.org/10.1051/0004-6361:20030044
  2. Bowyer, S., Korpela, E. J., Lampton, M., Jones, T. W. 2004, ApJ, 605, 168 https://doi.org/10.1086/382206
  3. Buote, D. A., & Tsai, J. C. 1996, ApJ, 458, 27 https://doi.org/10.1086/176790
  4. Fukazawa, Y., et al., 2001, ApJ, 546, L87 https://doi.org/10.1086/318863
  5. Fujita, Y., Sarazin, C. L., Kempner, J. C., Rudnick, L., Slee, O. B., Roy, A. L., Andernach, H., & Ehle, M. 2002, ApJ, 575, 764 https://doi.org/10.1086/341352
  6. Fujita, Y., Takizawa, M., & Sarazin, C. L. 2003, ApJ, 584, 190 https://doi.org/10.1086/345599
  7. Fusco-Femiano, R., et al., 1999, ApJ, 513, L21 https://doi.org/10.1086/311902
  8. Fusco-Femiano, R, et al., 2000, ApJ, 534, L7 https://doi.org/10.1086/312639
  9. Fusco-Femiano, R, et al., 2003, A&A, 398, 441 https://doi.org/10.1051/0004-6361:20021639
  10. Fusco-Femiano, R., Orlandini, M., Brunetti, G., Feretti, L., Giovannini, G., Grandi, P., & Setti, G. 2004, ApJ, 602, L73 https://doi.org/10.1086/382695
  11. Gabici, S., & Blasi, P. 2004, APh, 20, 579
  12. Govoni, F., Markevitch, M., Vikhlinin, A., VanSpeybroeck, L., Feretti, L., & Giovannini, G. 2004, ApJ, 605, 695 https://doi.org/10.1086/382674
  13. Hudson, D. S., & Henriksen, M. J. 2003, ApJ, 595, Ll https://doi.org/10.1086/378844
  14. Kaastra, J. S., Lieu, R., Tamura, T., Paerels, F. B. S., & den Herder, J. W. 2003, A&A, 397, 445 https://doi.org/10.1051/0004-6361:20021514
  15. Kempner, J., & Sarazin, C. L. 2001, ApJ, 548, 639 https://doi.org/10.1086/319024
  16. Kempner, J., Sarazin, C. L., & Ricker, P. R 2002, ApJ, 579,236 https://doi.org/10.1086/342748
  17. Liang, H., Hunstead, R W., Birkinshaw, M., & Andreani, P. 2000, ApJ, 544, 686 https://doi.org/10.1086/317223
  18. Markevitch, M., & Vikhlinin, A. 2001, ApJ, 563, 95 https://doi.org/10.1086/323831
  19. Nevalainen, J., Lieu, R., Bonamente, M., & Lumb, D. 2003, ApJ, 584, 716 https://doi.org/10.1086/345830
  20. Randall, S. W., & Sarazin, C. L. 2004, preprint
  21. Randall, S. W., Sarazin, C. L., & Ricker, P. M. 2002, ApJ, 577, 579 https://doi.org/10.1086/342239
  22. Randall, S. W., Sarazin, C. L., & Ricker, P. M. 2004, preprint
  23. Rephaeli, Y., & Gruber, D. 2003, ApJ, 579, 587 https://doi.org/10.1086/342796
  24. Rephaeli, Y., Gruber, D., & Blanco, P. 1999, ApJ, 511, L21 https://doi.org/10.1086/311828
  25. Ricker, P. M., & Sarazin, C. L. 2001, ApJ, 561, 621 https://doi.org/10.1086/323365
  26. Rossetti, M., & Molendi, S. 2004, A&A, 414, L41 https://doi.org/10.1051/0004-6361:20031749
  27. Sarazin, C. L. 1999a, ApJ, 520, 529 https://doi.org/10.1086/307501
  28. Sarazin, C. L. 1999b, in Diffuse Thermal and Relativistic Plasma in Galaxy Clusters, ed. H. Bohringer, L. Feretti, & P. Schuecker (Garching: MPE Rep. 271), 185
  29. Sarazin, C. L. 2002, in Merging Processes in Clusters of Galaxies, ed. L. Feretti, 1. M. Gioia, & G. Giovannini (Dordrecht: Kluwer), 1
  30. Sarazin, C. L., & Lieu, R. 1998, ApJ, 494, LI77
  31. Slee, O. B., Roy, A. L., Murgia, M., Andernach, H., & Ehle, M. 2001, AJ, 122, 1172 https://doi.org/10.1086/322105
  32. Smith, G. P., Edge, A. C., Eke, V. R, Nichol, R C., Smail, 1., & Kneib, J.-P. 2003, ApJ, 590, L79 https://doi.org/10.1086/376747
  33. Torri, E., Meneghetti, M., Bartelmann, M., Moscardini, L., Rasia, E., & Tormen, G. 2004, MNRAS, 349, 476 https://doi.org/10.1111/j.1365-2966.2004.07508.x

Cited by

  1. Gamma rays from clusters and groups of galaxies: Cosmic rays versus dark matter vol.80, pp.2, 2009, https://doi.org/10.1103/PhysRevD.80.023005
  2. Weak lensing and spectroscopic analysis of the nearby dissociative merging galaxy cluster Abell 3376 vol.468, pp.4, 2017, https://doi.org/10.1093/mnras/stx791
  3. Particle re-acceleration in the ICM and low-frequency observations vol.2, pp.14, 2006, https://doi.org/10.1017/S1743921307011052
  4. Internal dynamics of the galaxy cluster Abell 545 vol.529, 2011, https://doi.org/10.1051/0004-6361/201016180
  5. Internal dynamics of Abell 2254: a merging galaxy cluster with a clumpy, diffuse radio emission vol.536, 2011, https://doi.org/10.1051/0004-6361/201117332
  6. Discovery of the correspondence between intra-cluster radio emission and a high pressure region detected through the Sunyaev-Zel’dovich effect vol.534, 2011, https://doi.org/10.1051/0004-6361/201117788
  7. ON THE CONNECTION BETWEEN GIANT RADIO HALOS AND CLUSTER MERGERS vol.721, pp.2, 2010, https://doi.org/10.1088/2041-8205/721/2/L82
  8. Radio halos in future surveys in the radio continuum vol.548, 2012, https://doi.org/10.1051/0004-6361/201220018
  9. Probing the origin of giant radio haloes through radio and γ-ray data: the case of the Coma cluster vol.426, pp.2, 2012, https://doi.org/10.1111/j.1365-2966.2012.21785.x
  10. Stochastic re-acceleration in the ICM vol.2, pp.14, 2006, https://doi.org/10.1017/S1743921307009982
  11. Cluster Merger Shock Constraints on Particle Acceleration and Nonthermal Pressure in the Intracluster Medium vol.675, pp.1, 2008, https://doi.org/10.1086/526409
  12. Deep low-frequency observations with the Giant Metrewave Radio Telescope: a search for relic radio emission vol.392, pp.4, 2009, https://doi.org/10.1111/j.1365-2966.2008.14015.x
  13. TESTING HYDROSTATIC EQUILIBRIUM IN GALAXY CLUSTER MS 2137 vol.756, pp.1, 2012, https://doi.org/10.1088/0004-637X/756/1/1
  14. The merger history of the complex cluster Abell 1758: a combined weak lensing and spectroscopic view vol.466, pp.3, 2017, https://doi.org/10.1093/mnras/stw3238
  15. Neutrinos and Gamma Rays from Galaxy Clusters vol.687, pp.1, 2008, https://doi.org/10.1086/591723
  16. The Connection between Radio Halos and Cluster Mergers and the Statistical Properties of the Radio Halo Population vol.32, pp.4, 2011, https://doi.org/10.1007/s12036-011-9117-1
  17. Creation of cosmic structure in the complex galaxy cluster merger Abell 2744 vol.417, pp.1, 2011, https://doi.org/10.1111/j.1365-2966.2011.19266.x
  18. Structure and turbulence in simulated galaxy clusters and the implications for the formation of radio haloes vol.418, pp.4, 2011, https://doi.org/10.1111/j.1365-2966.2011.19637.x
  19. DIFFUSE RADIO EMISSION IN ABELL 754 vol.699, pp.2, 2009, https://doi.org/10.1088/0004-637X/699/2/1883