• 제목/요약/키워드: extracellular proteins

검색결과 462건 처리시간 0.027초

Nanoengineered, cell-derived extracellular matrix influences ECM-related gene expression of mesenchymal stem cells

  • Ozguldez, Hatice O.;Cha, Junghwa;Hong, Yoonmi;Koh, Ilkyoo;Kim, Pilnam
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.337-345
    • /
    • 2018
  • Background: Human mesenchymal stem cells (hMSCs) are, due to their pluripotency, useful sources of cells for stem cell therapy and tissue regeneration. The phenotypes of hMSCs are strongly influenced by their microenvironment, in particular the extracellular matrix (ECM), the composition and structure of which are important in regulating stem cell fate. In reciprocal manner, the properties of ECM are remodeled by the hMSCs, but the mechanism involved in ECM remodeling by hMSCs under topographical stimulus is unclear. In this study, we therefore examined the effect of nanotopography on the expression of ECM proteins by hMSCs by analyzing the quantity and structure of the ECM on a nanogrooved surface. Methods: To develop the nanoengineered, hMSC-derived ECM, we fabricated the nanogrooves on a coverglass using a UV-curable polyurethane acrylate (PUA). Then, hMSCs were cultivated on the nanogrooves, and the cells at the full confluency were decellularized. To analyze the effect of nanotopography on the hMSCs, the hMSCs were re-seeded on the nanoengineered, hMSC-derived ECM. Results: hMSCs cultured within the nano-engineered hMSC-derived ECM sheet showed a different pattern of expression of ECM proteins from those cultured on ECM-free, nanogrooved surface. Moreover, hMSCs on the nano-engineered ECM sheet had a shorter vinculin length and were less well-aligned than those on the other surface. In addition, the expression pattern of ECM-related genes by hMSCs on the nanoengineered ECM sheet was altered. Interestingly, the expression of genes for osteogenesis-related ECM proteins was downregulated, while that of genes for chondrogenesis-related ECM proteins was upregulated, on the nanoengineered ECM sheet. Conclusions: The nanoengineered ECM influenced the phenotypic features of hMSCs, and that hMSCs can remodel their ECM microenvironment in the presence of a nanostructured ECM to guide differentiation into a specific lineage.

시아노박테리아의 세포외산물에 대한 연구 (Extracellular Products from Cyanobacteria)

  • 권종희;김기은
    • KSBB Journal
    • /
    • 제23권5호
    • /
    • pp.398-402
    • /
    • 2008
  • Cyanobacteria havebeen identified as one of the most promising group producing novel biochemically active natural products. Cyanobacteria are a very old group of prokaryotic organisms that produce very diverse secondary metabolites, especially non-ribosomal peptide and polyketide structures. Though many useful natural products have been identified in cyanobacterial biomass, cyanobacteria produce also extracellular proteins related with NRPS/PKS. Detection of unknown secondary metabolites in medium was carried in the present study by a screening of 98 cyanobacterial strains. A degenerated PCR technique as molecular approaches was used for general screening of NRPS/PKS gene in cyanobacteria. A putative PKS gene was detected by DKF/DKR primer in 38 strains (38.8%) and PCR amplicons resulted from a presence of NRPS gene were showed by MTF2/MTR2 primer in 30 strains (30.6%) and by A3/A7 primer in 26 strains (26.5%). HPLC analysis for a detection of natural products was performed in extracts from medium in which cyanobacteria containing putative PKS or NRPS were cultivated. CBT57, CBT62, CBT590 and CBT632 strains were screened for a production of extracellular natural products. 5 pure substances were detected from medium of these cyanobacteria.

Perspectives on Bovine Milk-Derived Extracellular Vesicles for Therapeutic Applications in Gut Health

  • Mun, Daye;Oh, Sangnam;Kim, Younghoon
    • 한국축산식품학회지
    • /
    • 제42권2호
    • /
    • pp.197-209
    • /
    • 2022
  • Extracellular vesicles (EVs) are nanosized vesicles secreted from cells into the extracellular environment and are composed of a lipid bilayer that contains cargos with biological activity, such as lipids, proteins, mRNAs, and noncoding microRNAs (miRNAs). Due to their biological activity and their role in cell-to-cell communication, interest in EVs is rapidly increasing. Bovine milk is a food consumed by people of all ages around the world that contains not only a significant amount of nutrients but also EVs. Milk-derived EVs also exhibit biological activity similar to other source-derived EVs, and studies on bovine milk EVs have been conducted in various research fields regarding sufficient milk production. In particular, not only are the effects of milk EVs themselves being studied, but the possibility of using them as drug carriers or biomarkers is also being studied. In this review, the characteristics and cargo of milk EVs are summarized, as well as their uptake and stability, efficacy and biological effects as carriers, and future research directions are presented.

Homo- or Hetero-Dimerization of Muscarinic Receptor Subtypes is Not Mediated by Direct Protein-Protein Interaction Through Intracellular and Extracellular Regions

  • Kang, Yun-Kyung;Yoon, Tae-Sook;Lee, Kyung-Lim;Kim, Hwa-Jung
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.846-854
    • /
    • 2003
  • The oligomerization of G-proteincoupled receptors (GPCRs) has been shown to occur by various mechanisms, such as via disulfide covalent linkages, non covalent (ionic, hydrophobic) interactions of the N-terminal, and/or transmembrane and/or intracellular domains. Interactions between GPCRs could involve an association between identical proteins (homomers) or non-identical proteins (heteromers), or between two monomers (to form dimers) or multiple monomers (to form oligomers). It is believed that muscarinic receptors may also be arranged into dimeric or oigomeric complexes, but no systematic experimental evidence exists concerning the direct physical interaction between receptor proteins as its mechanism. We undertook this study to determine whether muscarinic receptors form homomers or a heteromers by direct protein-protein interaction within the same or within different subtypes using a yeast two-hybrid system. Intracellular loops (i1, i2 and i3) and the C-terminal cytoplasmic tails (C) of human muscarinic (Hm) receptor subtypes, Hm1, Hm2 and Hm3, were cloned into the vectors (pB42AD and pLexA) of a two-hybrid system and examined for heteromeric or homodimeric interactions between the cytoplasmic domains. No physical interaction was observed between the intracellular domains of any of the Hm/Hm receptor sets tested. The results of our study suggest that the Hm1, Hm2 and Hm3 receptors do not form dimers or oligomers by interacting directly through either the hydrophilic intracellular domains or the C-terminal tail domains. To further investigate extracellular domain interactions, the N-terminus (N) and extracellular loops (o1 and o2) were also cloned into the two-hybrid vectors. Interactions of Hm2N with Hm2N, Hm2o1, Hm2o2, Hm3N, Hm3o1 or Hm3o2 were examined. The N-terminal domain of Hm2 was found to have no direct interaction with any extracellular domain. From our results, we excluded the possibility of a direct interaction between the muscarinic receptor subtypes (Hm1, Hm2 and Hm3) as a mechanism for homo- or hetero-meric dimerization/oligomerization. On the other hand, it remains a possibility that interaction may occur indirectly or require proper conformation or subunit formation or hydrophobic region involvement.

Morphogenetic and neuronal characterization of human neuroblastoma multicellular spheroids cultured under undifferentiated and all-trans-retinoic acid-differentiated conditions

  • Jung, Gwon-Soo;Lee, Kyeong-Min;Park, Jin-Kyu;Choi, Seong-Kyoon;Jeon, Won Bae
    • BMB Reports
    • /
    • 제46권5호
    • /
    • pp.276-281
    • /
    • 2013
  • In this study, we aimed to compare the morphogenetic and neuronal characteristics between monolayer cells and spheroids. For this purpose, we established spheroid formation by growing SH-SY5Y cells on the hydrophobic surfaces of thermally-collapsed elastin-like polypeptide. After 4 days of culture, the relative proliferation of the cells within spheroids was approximately 92% of the values for monolayer cultures. As measured by quantitative assays for mRNA and protein expressions, the production of synaptophysin and neuronspecific enolase (NSE) as well as the contents of cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins are much higher in spheroids than in monolayer cells. Under the all-trans-retinoic acid (RA)-induced differentiation condition, spheroids extended neurites and further up-regulated the expression of synaptophysin, NSE, CAMs, and ECM proteins. Our data indicate that RA-differentiated SH-SY5Y neurospheroids are functionally matured neuronal architectures.

The Dynamics of Protein Decomposition in Lakes of Different Trophic Status - Reflections on the Assessment of the Real Proteolytic Activity In Situ

  • Siuda, Waldemar;Kiersztyn, Bartosz;Chrost, Ryszard J.
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.897-904
    • /
    • 2007
  • The aim of this paper is to discuss the methodology of our investigation of the dynamics of protein degradation and the total in situ protealytic activity in meso/eutrophic, eutrophic, and hypereutrophic freshwater environments. Analysis of the kinetics and rates of enzymatic release of amino acids in water samples preserved with sodium azide allows determination of the concentrations of labile proteins $(C_{LAB})$, and their half-life time $(T_{1/2})$. Moreover, it gives more realistic information on resultant activity in situ $(V_{T1/2})$ of ecto- and extracellular proteases that are responsible for the biological degradation of these compounds. Although the results provided by the proposed method are general y well correlated with those obtained by classical procedures, they better characterize the dynamics of protein degradation processes, especially in eutrophic or hypereutrophic lakes. In these environments, processes of protein decomposition occur mainly on the particles and depend primarily on a metabolic activity of seston-attached bacteria. The method was tested in three lakes. The different degree of eutrophication of these lakes was clearly demonstrated by the measured real proteolytic pattern and confirmed by conventional trophic state determinants.

The Effect of a Long-Term Cyclic Strain on Human Dermal Fibroblasts Cultured in a Bioreactor on Chitosan-Based Scaffolds for the Development of Tissue Engineered Artificial Dermis

  • Lim, Sae-Hwan;Son, Young-Sook;Kim, Chun-Ho;Shin, Heung-Soo;Kim, Jong-Il
    • Macromolecular Research
    • /
    • 제15권4호
    • /
    • pp.370-378
    • /
    • 2007
  • Mechanical stimulation is known to activate several cellular signal transduction pathways, leading to the induction of signaling molecules and extracellular matrix (ECM) proteins, thereby modulating cellular activities, such as proliferation and survival. In this study, primary human dermal fibroblasts (HDFs) were seeded onto chitosan-based scaffolds, and then cultured for 3 weeks in a bioreactor under a cyclic strain of 1 Hz frequency. Compared to control samples cultured under static conditions, the application of a cyclic strain stimulated the proliferation of HDFs in I week, and by week 3 the thickness of the cell/scaffold composites increased 1.56 fold. Moreover, immunohistochemical staining of the culture media obtained from the cell/scaffold samples subjected to the cyclic strain, revealed increases in the expression and secretion of ECM proteins, such as fibronectin and collagen. These results suggest that the preconditioning of cell/scaffold composites with a cyclic strain may enhance the proliferation of HDFs, and even facilitate integration of the engineered artificial dermal tissue into the host graft site.

세포외 기질 단백질이 생쥐 분리할구의 체외발달에 미치는 영향 (Effect of Extracellular Matrix Proteins on the In Vitro Development of Isolated Mouse Blastomeres)

  • 곽대오;김선구;김영수;박충생
    • 한국가축번식학회지
    • /
    • 제17권4호
    • /
    • pp.357-363
    • /
    • 1994
  • To investigate the effect of extracellular matrix proteins on the in vitro development of blastomeres isolated from 2, 4, and 8-cell embryos(termed 1/2, 1/4 and 1/8 blastomeres, respectively) of ICR strain mice, those were cultured in fibronectin, gelatin, or collagen precoated culture dishes containing 1.5ml of NaHCO3-BMOC-3 medium at 37$^{\circ}C$ for 72 hrs, under the atmosphere at 5% CO2. and 95% air. Fibronectin, gelatin, or collagen significantly(P<0.01) increased and blastocyst formation rate compared with controls in 1/2(65.3, 59.2, 60.7% vs. 21.6%), 1/4(63.7, 53.4, 57.1% vs. 26.3%), and 1/8 blastomeres(61.1, 52.3, 53.7% vs. 19.1%). Both the nuclear number(P<0.05) and diameter of blastocysts(P<0.01) developed from balstomeres were significantly affected by the origin of blastomeres. The nuclear number of blastocysts developed from 1/2, 1/4, and 1/8 blastomeres ranged 29.3$\pm$1.6, 24.5$\pm$1.3, and 20..$\pm$1.2, respectively. And the diameter of those blastocysts was 88.3$\pm$2.4, 57.6$\pm$2.1, 39.8$\pm$1.9${\mu}{\textrm}{m}$, respectively.

  • PDF

Decorin: a multifunctional proteoglycan involved in oocyte maturation and trophoblast migration

  • Park, Beom Seok;Lee, Jaewang;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제48권4호
    • /
    • pp.303-310
    • /
    • 2021
  • Decorin (DCN) is a proteoglycan belonging to the small leucine-rich proteoglycan family. It is composed of a protein core containing leucine repeats with a glycosaminoglycan chain consisting of either chondroitin sulfate or dermatan sulfate. DCN is a structural component of connective tissues that can bind to type I collagen. It plays a role in the assembly of the extracellular matrix (ECM), and it is related to fibrillogenesis. It can interact with fibronectin, thrombospondin, complement component C1, transforming growth factor (TGF), and epidermal growth factor receptor. Normal DCN expression regulates a wide range of cellular processes, including proliferation, migration, apoptosis, and autophagy, through interactions with various molecules. However, its aberrant expression is associated with oocyte maturation, oocyte quality, and poor extravillous trophoblast invasion of the uterus, which underlies the occurrence of preeclampsia and intrauterine growth restriction. Spatiotemporal hormonal control of successful pregnancy should regulate the concentration and activity of specific proteins such as proteoglycan participating in the ECM remodeling of trophoblastic and uterine cells in fetal membranes and uterus. At the human feto-maternal interface, TGF-β and DCN play crucial roles in the regulation of trophoblast invasion of the uterus. This review summarizes the role of the proteoglycan DCN as an important and multifunctional molecule in the physiological regulation of oocyte maturation and trophoblast migration. This review also shows that recombinant DCN proteins might be useful for substantiating diverse functions in both animal and in vitro models of oogenesis and implantation.

가토 하악골체부 신연 골형성술시 하이알우론산이 세포외 기질 단백질의 발현과 골형성에 미치는 영향 (THE EFFECT OF HYALURONIC ACID ON EXPRESSION OF EXTRACELLULAR MATRIX PROTEINS AND BONE FORMATION IN RABBIT MANDIBULAR DISTRACTION OSTEOGENESIS)

  • 박기남;송현철;지유진;유진영
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제31권2호
    • /
    • pp.116-129
    • /
    • 2005
  • Distraction osteogenesis is a new bone formation technique. There is a advantage of the environmental adaptation when distraction force is applied to the gap between osteotomy lines. But it has a disadvantage of long-term wearing of the appliance and long consolidation period. Therefore we make an effort to reduce it and repair normal function. Extracellular matrix proteins have a function to control the cellular growth, migration, shape and metabolism. In these, hyaluronic acid is a member of polysaccharide glycosaminoglycans (GAGs) and has a important function as bone formation and osteoinduction property. Purpose : In this experimental study in rabbit mandibular distraction osteogenesis, we investigated the bone enhancing property of hyaluronic acid and the expression of extracellular proteins such as osteocalcin and osteonectin. Materials and Methods : The experimental study was carried out on 24 Korean male white rabbits (both mandibular body, n=48). Distraction group was divided to distraction experimental (A, n=16) and distraction control (B, n=16) by the application of hyaluronic acid (Hyruan, LGCI, Seoul, Korea). Normal control group (C, n=16) was only osteotomized. After 5 days latency, distraction devices were activated at a rate of 1.4 mm per day (0.7 mm every 12hours) for 3.5 days. Animals were sacrificed at postoperative 3, 7, 14, and 28 days. H&E stain and immunohistochemical stain was done on decalcified section. Additionally RT-PCR analysis was done for the identification of the expression of osteocalcin and osteonectin. Results : The bone formation in distraction experimental group was much more than that in distraction and normal control group at postoperative 28 days. In immunohistochemical stain, osteocalcin was enhanced at only postoperative 14 days, but osteonectin was not different at each post-operation days. In RT-PCR analysis, osteocalcin was not different at each post-operation days, but osteonectin was strongly expressed in distraction experimental group at postoperative 7 days. The expression of osteocalcin and osteonectin was elevated during the healing period. Conclusion : We found the good bone formation ability of hyaluronic acid in distraction osteogenesis through the immunohistochemistry and RTPCR analysis to osteocalcin and osteonectin, known as a bone formation marker. The application of hyaluronic acid in distraction osteogenesis is a method to reduce the consolidation period.