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Characteristics and functions of decorin 

About 20 years ago, proteoglycan gene families were classified 
and simplified according to three criteria: their cellular and subcellu-
lar location, the overall gene and protein homology, and the pres-
ence of specific protein modules within their respective protein 
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Decorin (DCN) is a proteoglycan belonging to the small leucine-rich proteoglycan family. It is composed of a protein core containing leucine 
repeats with a glycosaminoglycan chain consisting of either chondroitin sulfate or dermatan sulfate. DCN is a structural component of con-
nective tissues that can bind to type I collagen. It plays a role in the assembly of the extracellular matrix (ECM), and it is related to fibrillogene-
sis. It can interact with fibronectin, thrombospondin, complement component C1, transforming growth factor (TGF), and epidermal growth 
factor receptor. Normal DCN expression regulates a wide range of cellular processes, including proliferation, migration, apoptosis, and auto-
phagy, through interactions with various molecules. However, its aberrant expression is associated with oocyte maturation, oocyte quality, 
and poor extravillous trophoblast invasion of the uterus, which underlies the occurrence of preeclampsia and intrauterine growth restriction. 
Spatiotemporal hormonal control of successful pregnancy should regulate the concentration and activity of specific proteins such as proteo-
glycan participating in the ECM remodeling of trophoblastic and uterine cells in fetal membranes and uterus. At the human feto-maternal in-
terface, TGF-β and DCN play crucial roles in the regulation of trophoblast invasion of the uterus. This review summarizes the role of the pro-
teoglycan DCN as an important and multifunctional molecule in the physiological regulation of oocyte maturation and trophoblast migra-
tion. This review also shows that recombinant DCN proteins might be useful for substantiating diverse functions in both animal and in vitro 
models of oogenesis and implantation. 
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cores. In particular, the largest class is formed by a set of extracellular 
proteoglycans encoded by 25 genes. The first group contains the 4 
genes for hyalectan, a major structural component of cartilage, 
blood vessels, and the central nervous system. The second comprises 
18 small leucine-rich proteoglycans (SLRPs). These SLRPs have a mul-
titude of functions, including signaling through various receptors. 
Many SLRPs are found in the circulation and various body fluids. The 
third is the SPOCK family of calcium-binding heparan sulfate proteo-
glycans [1]. 

The SLRPs expressed in most extracellular matrices (ECMs) gener-
ally can act as structural components to maintain tissue architecture. 
They are involved in range of fundamental biological and physiologi-
cal functions, including cell adhesion, signal transduction, and the 
immune response. SLRPs share many biological functions by binding 
to ECM components, particularly various collagens, receptor tyrosine 
kinases, and innate immune receptors (Toll-like receptors) on cell 
surfaces when present in a soluble form [2,3] . They are characterized 



by a relatively small protein core of 36–42 kDa, including leucine-rich 
repeats (LRRs) [4]. Individual LRR modules have 20–30 amino acid 
residues with a highly conserved “LxxLxLxxN” motif. The central LxL 
part of the module forms the core β strand, with two leucines point-
ing towards the interior of the protein, making up the hydrophobic 
core, whereas the variable x residues within the motif are exposed to 
solvent. Some are involved in interactions with ligands. Aspargines in 
the motif make continuous hydrogen bonds with backbone carbon-
yls of neighboring β-strands throughout the entire protein. This ex-
tended hydrogen bond network is called the “asparagine ladder.” 
Therefore, β-strands are more closely packed and assembled into a 
large β-sheet, making up the entire concave surface of the horse-
shoe. Variable amino acids, except the conserved β-strands of each 
LRR module, are surface-exposed. Some of them play important 
roles in ligand interactions. To prevent the exposure of hydrophobic 
core of LRR modules, it has two special modules named LRRNT and 
LRRCT in the N- and C-termini of proteins. These modules do not fol-

low the sequence conservation pattern of LRR modules. They often 
contain an anti-parallel β-hairpin stabilized by disulfide bridges [5-7]. 

The 18 SLRP members are grouped into five classes. Classes I–III 
have the conserved C-terminal cysteine-rich capping motif, a unique 
feature that has recently been described as the “ear repeat,” appear-
ing as an abnormal pattern of cysteine residues followed by the as-
paragine residue in consensus sequences. Classes IV and V are non-
canonical fragments without the ear repeat [1,2,4]. The sequence 
alignment and phylogenetic tree of the SLRPs are presented in Fig-
ure 1. 

Decorin (DCN), which belongs to class I, is produced by a variety of 
stromal cells in the body, such as fibroblasts in the dermis, cornea, 
and chondrocytes of cartilage. It may participate in ECM remodeling 
during the attachment and detachment of the placenta within the 
course of pregnancy in cows [8]. Those with disrupted DCN genes 
are viable, but they show fragile skin with markedly reduced tensile 
strength. As a result, aberrant collagen morphology appears in the 

Figure 1. Sequence alignment and phylogenetic tree of small leucine-rich proteoglycans (SLRPs) using known crystal structures of decorin 
(PDB ID: 1XKU), biglycan (PDB ID: 2FT3), fibromodulin (PDB ID: 5MXO), osteomodulin (PDB ID: 5YQ5), and chondroadherin (PDB ID: 5LFN). 
(A) Sequence alignment of crystal structures of five SLRPs. Protein sequences were aligned with Clustal Omega (Clustal Omega<Multiple 
Sequence Alignment<EMBL-EBI) and generated using the EsPript 3.0 program (ESPript 3 [ibcp.fr]). (B) Phylogenetic tree of SLRPs with known 
crystal structures. (C) Diagram of the crystal structure of Bos taurus decorin rendered with PyMOL v1.8. Vertical arrows indicate β-strands. 
Coiled ribbons indicate α-helices. Leucine-rich repeats (LRRs) are numbered above the β-strands. N-acetylglucosamine is linked to N182, 
N233, and N274. Disulfide bridges are shown in green. The terminal LRR Cys capping motif, known as the ear repeat, is highlighted in pink.
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skin and tendon with coarser and irregular fiber outlines [9]. Normal 
DCN expression regulates a wide range of cellular processes includ-
ing proliferation, migration, apoptosis, and autophagy through inter-
actions with various molecules. However, aberrant expression of 
DCN has been associated with poor extravillous trophoblast (EVT) in-
vasion of the uterus, which underlies the occurrence of preeclampsia 
(PE) and intrauterine growth restriction (IUGR) [10]. 

During pregnancy, placental cells are under tight hormonal con-
trol. Among others, they regulate the concentration and activity of 
specific proteins participating in the ECM remodeling of fetal mem-
branes [11]. Therefore, the proteoglycan DCN plays a variety of roles. 
The most important role of DCN is that it can regulate cell adhesion 
mediated by various binding proteins and tissues for fetal formation. 

Production of recombinant DCN protein in the 
laboratory 

For functional analysis, DCN should be made by recombinant DNA 
technology in the laboratory. The whole gene of the human DCN 
protein was amplified by PCR and cloned into a modified pAcGP67a 
vector. The cloned DNA of the DCN gene was confirmed by sequenc-
ing. Large-scale DNA preparations were then performed to obtain a 
sufficient amount of transfection-grade plasmid DNA, which was 
co-transfected with ProGreen (a baculovirus genomic vector) into 
Sf9 (Spodoptera frugiperda) insect cells. The vector was then gener-
ated and amplified by recombination between the cloned vector 
and viral DNA. The Fc tagged DCN protein was expressed in High Five 
cells. The culture media of the High Five cells were harvested and su-
pernatants containing secreted DCN-Fc proteins were purified by 
protein A affinity chromatography. The molecular mass of the DCN 
protein was calculated to be approximately 37.9 kDa, with an isoelec-
tric point (pI) of 8.61, using the theoretical tool “Compute pI/Mw” 
(https://web.expasy.org/compute_pi/). The DCN-Fc tag was cleaved 
by thrombin. Using Superdex 200-size exclusion chromatography 
(SEC), the cleaved DCN was further purified. It was found to be a 
monomer, which was validated as a SEC standard component. The 
purification steps of affinity and SEC were monitored by sodium do-
decyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The 
above procedure in insect cells allowed the efficient generation of 
recombinant DCN protein, which was subsequently expressed and 
purified as shown in Figure 2. 

DCN in the ovary and oocyte maturation 

The ovary in adults has diverse functions, including follicle growth 
and maturation, ovulation, regression, and corpus luteum (CL) for-
mation. During this process, bidirectional communication between 

follicles and the ECM may influence the quality of oocytes in mam-
mals. Many studies have demonstrated that DCN is present in the 
ECM of normal and tumorous ovaries in humans [12,13]. As dis-
cussed above, DCN is a secreted proteoglycan that plays a structural 
role in the ECM. It can interfere with the signaling of multiple growth 
factors and their receptors [14]. For instance, DCN can directly bind 
to epidermal growth factor receptor (EGFR), which has many physio-
logical functions in oocyte maturation [15,16]. When DCN binds to 
EGFR, it causes phosphorylation and activation of EGFR, followed by 
internalization and downregulation of EGFR signaling, resulting in a 
chronic blockage of the EGF/EGFR signaling pathway [17-21]. In the 
ovary, EGF-like molecules, including amphiregulin and epiregulin, 
with roles in the orchestration of ovulation and subsequent develop-
ment of the CL in response to the luteinizing hormone surge are pro-
duced in a fine-tuned manner [15,22]. Regarding human oocyte 
maturation, EGF also targets human oocytes to regulate their meiotic 
maturation [23]. According to a previous report, DCN is present in 
human and monkey ovarian stroma, follicular theca cells, luteal cells, 
and the follicular fluid of ovulatory follicles. It has been postulated 
that DCN can act as a paracrine signaling factor by inhibiting growth 
factor/growth factor receptor interactions, suggesting that DCN 
might regulate folliculogenesis and oocyte quality [24]. Peng et al. 
[25] synthesized full-length cDNA of goat DCN and identified its ex-
pression patterns in various tissues and the ovary. They also con-
firmed that over-expressed DCN not only could promote pro-
grammed cell death through a non-mitochondrial apoptosis path-
way, but also could enhance cell arrest by p21 upregulation. Notably, 
the physiological actions of DCN are mediated through multiple sig-
naling pathways, including the PKA, p38 kinase, and PI3K pathways. 
Kedem et al. [26] recently conducted a prospective study involving 
49 patients treated at a local assisted reproductive technology (ART) 
center. They characterized the in vivo expression of DCN mRNA in 
mural and cumulus granulosa cells (CGCs). In previous studies, the 
human chorionic gonadotropin–induced expression of DCN was 
found to be highly upregulated in pre-ovulatory follicles [27-29]. In-
terestingly, DCN expression in human CGCs seems to be correlated 
with maturation stage of the corresponding oocyte. A plausible ex-
planation is that oocytes that arrest at immature stages under con-
trolled ovarian hyperstimulation finally fail to undergo maturation. 
Their adjacent cumulus cells also fail to express DCN. Another expla-
nation is that downregulated DCN expression in CGCs is one of caus-
ative factors for meiotic arrest. Miscommunication between the oo-
cyte and surrounding somatic cells may result in subfertility [26]. 

Sawada et al. [30] suggested that DCN in the follicular fluid (F-DCN) 
is a useful biomarker of the quality of oocytes retrieved from the cor-
responding follicles in ART. They analyzed 130 oocytes of 88 patients 
treated with ART because of unexplained infertility. In patients with 
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controlled ovarian stimulation protocols, the median level of F-DCN 
was slightly higher than that in the serum (S-DCN). However, F-DCN 
showed a weak negative correlation with S-DCN. They suggested 
that DCN actively taken into the follicular fluid from blood might play 
beneficial roles in follicle and oocyte maturation. Regardless of the 
fertilization method, fertilized eggs showed no significant differenc-
es between F-DCN and S-DCN. Interestingly, F-DCN of fertilized oo-
cytes was significantly lower than that of unfertilized oocytes only in 
patients who underwent intracytoplasmic sperm injection. They also 
proved that the F-DCN level in intracytoplasmic sperm injection pa-
tients had potential to predict fertilization success based on a receiv-
er operating characteristic (ROC) curve analysis. When they estab-
lished a cut-off level of 34.5 ng/mL for F-DCN based on the ROC 
curve, they suggested that oocytes from follicles with F-DCN lower 
than the cut-off level tended to be better than those from oocytes 

with a high F-DCN [30].  

DCN in the uterus and trophoblast migration 

For successful blastocyst implantation, invasive trophoblast cells 
should mediate embryonic migration into the decidual matrix, form-
ing abundant networks connecting embryonic tissue to maternal 
blood vessels. Signaling in pregnancy can induce the differentiation 
of endometrial stromal cells into decidual cells. Human decidual cells 
stimulated by steroid hormones can produce 2 SLRPs: DCN and 
biglycan. The maintenance of pregnancy is guided by the composi-
tion and organization of the endometrial ECM in the uterus. Certain 
pathological conditions that occur during pregnancy, including PE, 
have been linked to abnormal placental morphology and conse-
quent fetal morbidity. In the uterus of a knockout mouse model, 

Figure 2. Production of the recombinant decorin (DCN) protein in insect cells. Recombinant human DCN was generated by a 
modified pAcGP67a vector. It was purified by affinity chromatography and size exclusion chromatography (SEC). (A) Scheme of affinity 
chromatography using protein A resin and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gel showing the purity of 
DCN. Lane 1: marker (M); lane 2: flow-through (Ft); lane 3: pre-resin (Pr), which was DCN-Fc bound protein A resin before thrombin treatment; 
lanes 4-6: elutions (E1-E3) of DCN after thrombin treatment; lane 7: post-resin (Po), which was the remaining resin after elutions of DCN. (B) 
Elution profiles of SEC and SDS-PAGE gel showing the purity of DCN. For SDS-PAGE analysis, lane 1: marker (M); lane 2-12: fraction numbers of 
eluted DCN. a)Indicates peak containing DCN.
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DCN was found to be required for myometrium contraction in a DCN 
concentration-dependent manner, whereas biglycan exhibited par-
tial compensation for DCN loss [31]. 

Transforming growth factor (TGF)-β and DCN are produced in the 
human feto-maternal interface. They play decisive roles in the regu-
lation of trophoblast invasion in the uterus. TGF-β has DCN binding 
sites, and its activity is controlled by DCN. Lysiak et al. [32] reported 
that TGF-β and DCN were co-localized in the ECM of first-trimester 
decidual tissues. They suggested that DCN might inhibit the activity 
of TGF-β in the ECM of the placenta. In addition, it has been suggest-

ed that migration, proliferation, and invasion of EVTs and choriocar-
cinoma cells are independently regulated by interactions between 
TGF-β and DCN in decidual tissues [33]. At the human feto-maternal 
interface, the decidua forms a dense ECM structure that can regulate 
trophoblast invasion. Experimentally, silencing of KAI1 (a metastasis 
suppressor) by double-stranded RNA interference reduced expres-
sion of DCN, a decidual product implicated in limiting trophoblast in-
vasion. It has been shown that KAI1 is expressed in decidual cells at 
the feto-maternal interface, where it might participate in the control 
of trophoblast invasion [34]. 

Figure 3. Schematic diagram showing how decorin acts as a multifunctional molecule during oocyte maturation and embryo implantation. 
EGF, growth factor receptor; EGFR, epidermal growth factor receptor; TGF, transforming growth factor; PE, preeclampsia; IUGR, intrauterine 
growth restriction; PROM, premature rupture of membranes.
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Several reports have shown that DCN in decidual tissue could reg-
ulate migration, proliferation, and invasion of EVTs of the human pla-
centa in a TGF-β-independent manner [33-35]. These functions were 
differentially mediated by the binding of DCN to various tyrosine ki-
nase receptors, including IGFR1, EGFR, and VEGFR2 [35]. It has been 
found that the overexpression of DCN in basal decidual cells is asso-
ciated with a hypo-invasive phenotype and poor endovascular dif-
ferentiation of trophoblast cells in PE [36]. Supplementation of DCN 
and knockdown of c-Met can reduce the proliferation and invasion 
in HTR-8 trophoblast cells. However, induction of autophagy and 
apoptosis by DCN were not synergistically enhanced by c-Met knock-
down. It was found that DCN could promote autophagy and apopto-
sis mainly through downregulating c-Met/Akt/mTOR activity in hu-
man trophoblast cells [10]. 

Halari et al. [37] found that DCN production increased during the 
decidualization of human endometrial stromal cells in vitro and early 
gestation in decidual samples tested ex vivo. Endometrial stromal 
cell maturation and differentiation into decidual cells are crucial for a 
normal pregnancy. In their study, depleting DCN in human endome-
trial stromal cells treated with decidualization stimulation failed to 
induce morphologically and functionally appropriate maturation 
and differentiation of decidual cells [37]. Recently, it has been sug-
gested that 2 SLRPs, DCN and biglycan, play important roles in the 
structural and functional integrity of the placenta and fetal mem-
brane and that their alterations may lead to several pregnancy-relat-
ed diseases such as repeated implantation failure, PE, IUGR, and pre-
mature rupture of membranes [4]. 

Conclusion 

DCN is a multifunctional molecule. Its functions are mediated by a 
variety of binding events, including receptor-mediated and glycos-
aminoglycan-mediated binding. At the human feto-maternal inter-
face, TGF-β and DCN play crucial roles in the regulation of trophoblast 
invasion in the uterus. TGF-β has DCN binding sites. Its activity is con-
trolled by DCN. During pregnancy, orchestrated hormonal control of 
successful pregnancy should regulate the concentration and activity 
of specific proteins such as DCN participating in the ECM remodeling 
of trophoblastic and uterine cells. This review confirms that proteogly-
can DCN is an important and multifunctional molecule in the physio-
logical regulation of oocyte maturation and trophoblast migration. 
The findings discussed herein suggest that recombinant DCN proteins 
might be useful for substantiating these diverse functions in both ani-
mal and in vitro models of oogenesis and implantation (Figure 3). 
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