Browse > Article
http://dx.doi.org/10.5851/kosfa.2022.e8

Perspectives on Bovine Milk-Derived Extracellular Vesicles for Therapeutic Applications in Gut Health  

Mun, Daye (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University)
Oh, Sangnam (Department of Functional Food and Biotechnology, Jeonju University)
Kim, Younghoon (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University)
Publication Information
Food Science of Animal Resources / v.42, no.2, 2022 , pp. 197-209 More about this Journal
Abstract
Extracellular vesicles (EVs) are nanosized vesicles secreted from cells into the extracellular environment and are composed of a lipid bilayer that contains cargos with biological activity, such as lipids, proteins, mRNAs, and noncoding microRNAs (miRNAs). Due to their biological activity and their role in cell-to-cell communication, interest in EVs is rapidly increasing. Bovine milk is a food consumed by people of all ages around the world that contains not only a significant amount of nutrients but also EVs. Milk-derived EVs also exhibit biological activity similar to other source-derived EVs, and studies on bovine milk EVs have been conducted in various research fields regarding sufficient milk production. In particular, not only are the effects of milk EVs themselves being studied, but the possibility of using them as drug carriers or biomarkers is also being studied. In this review, the characteristics and cargo of milk EVs are summarized, as well as their uptake and stability, efficacy and biological effects as carriers, and future research directions are presented.
Keywords
bovine milk; extracellular vesicles; gut health; therapeutics; carrier;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Munagala R, Aqil F, Jeyabalan J, Gupta RC. 2016. Bovine milk-derived exosomes for drug delivery. Cancer Lett 371:48-61.   DOI
2 Nordgren TM, Heires AJ, Zempleni J, Swanson BJ, Wichman C, Romberger DJ. 2019. Bovine milk-derived extracellular vesicles enhance inflammation and promote M1 polarization following agricultural dust exposure in mice. J Nutr Biochem 64:110-120.   DOI
3 Oliveira MC, Arntz OJ, Blaney Davidson EN, van Lent PLEM, Koenders MI, van der Kraan PM, van den Berg WB, Ferreira AVM, van de Loo FAJ. 2016. Milk extracellular vesicles accelerate osteoblastogenesis but impair bone matrix formation. J Nutr Biochem 30:74-84.   DOI
4 Maghraby MK, Li B, Chi L, Ling C, Benmoussa A, Provost P, Postmus AC, Abdi A, Pierro A, Bourdon C, Bandsma RHJ. 2021. Extracellular vesicles isolated from milk can improve gut barrier dysfunction induced by malnutrition. Sci Rep 11:7635.   DOI
5 Oliveira MC, Di Ceglie I, Arntz OJ, van den Berg WB, van den Hoogen FHJ, Ferreira AVM, van Lent PLEM, van de Loo FAJ. 2017. Milk-derived nanoparticle fraction promotes the formation of small osteoclasts but reduces bone resorption. J Cell Physiol 232:225-233.   DOI
6 Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, et al. 2018. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7:1535750.   DOI
7 Feng X, Chen X, Zheng X, Zhu H, Qi Q, Liu S, Zhang H, Che J. 2021. Latest trend of milk derived exosomes: Cargos, functions, and applications. Front Nutr 8:747294.   DOI
8 Matic S, D'Souza DH, Wu T, Pangloli P, Dia VP. 2020. Bovine milk exosomes affect proliferation and protect macrophages against cisplatin-induced cytotoxicity. Immunol Invest 49:711-725.   DOI
9 Hansen MS, Gadegaard ISE, Arnspang EC, Blans K, Nejsum LN, Rasmussen JT. 2020. Specific and non-invasive fluorescent labelling of extracellular vesicles for evaluation of intracellular processing by intestinal epithelial cells. Biomedicines 8:211.   DOI
10 del Pozo-Acebo L, Hazas MCL, Tome-Carneiro J, Gil-Cabrerizo P, San-Cristobal R, Busto R, Garcia-Ruiz A, Davalos A. 2021. Bovine milk-derived exosomes as a drug delivery vehicle for miRNA-based therapy. Int J Mol Sci 22:1105.   DOI
11 Li B, Hock A, Wu RY, Minich A, Botts SR, Lee C, Antounians L, Miyake H, Koike Y, Chen Y, Zani A, Sherman PM, Pierro A. 2019. Bovine milk-derived exosomes enhance goblet cell activity and prevent the development of experimental necrotizing enterocolitis. PLOS ONE 14:e0211431.   DOI
12 Samuel M, Fonseka P, Sanwlani R, Gangoda L, Chee SH, Keerthikumar S, Spurling A, Chitti SV, Zanker D, Ang CS, Atukorala I, Kang T, Shahi S, Marzan AL, Nedeva C, Vennin C, Lucas MC, Cheng L, Herrmann D, Pathan M, Chisanga D, Warren SC, Zhao K, Abraham N, Anand S, Boukouris S, Adda CG, Jiang L, Shekhar TM, Baschuk N, Hawkins CJ, Johnston AJ, Orian JM, Hoogenraad NJ, Poon IK, Hill AF, Jois M, Timpson P, Parker BS, Mathivanan S. 2021. Oral administration of bovine milk-derived extracellular vesicles induces senescence in the primary tumor but accelerates cancer metastasis. Nat Commun 12:3950.   DOI
13 Luo S, Sun X, Huang M, Ma Q, Du L, Cui Y. 2021. Enhanced neuroprotective effects of epicatechin gallate encapsulated by bovine milk-derived exosomes against Parkinson's disease through antiapoptosis and antimitophagy. J Agric Food Chem 69:5134-5143.   DOI
14 Manca S, Upadhyaya B, Mutai E, Desaulniers AT, Cederberg RA, White BR, Zempleni J. 2018. Milk exosomes are bioavailable and distinct microRNA cargos have unique tissue distribution patterns. Sci Rep 8:11321.   DOI
15 Arntz OJ, Pieters BCH, Oliveira MC, Broeren MGA, Bennink MB, de Vries M, van Lent PLEM, Koenders MI, van den Berg WB, van der Kraan PM, van de Loo FAJ. 2015. Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Mol Nutr Food Res 59:1701-1712.   DOI
16 Benmoussa A, Diallo I, Salem M, Michel S, Gilbert C, Sevigny J, Provost P. 2019. Concentrates of two subsets of extracellular vesicles from cow's milk modulate symptoms and inflammation in experimental colitis. Sci Rep 9:14661.   DOI
17 Samuel M, Chisanga D, Liem M, Keerthikumar S, Anand S, Ang CS, Adda CG, Versteegen E, Jois M, Mathivanan S. 2017. Bovine milk-derived exosomes from colostrum are enriched with proteins implicated in immune response and growth. Sci Rep 7:5933.   DOI
18 Shandilya S, Rani P, Onteru SK, Singh D. 2017. Small interfering RNA in milk exosomes is resistant to digestion and crosses the intestinal barrier in vitro. J Agric Food Chem 65:9506-9513.   DOI
19 Tong L, Hao H, Zhang Z, Lv Y, Liang X, Liu Q, Liu T, Gong P, Zhang L, Cao F, Pastorin G, Lee CN, Chen X, Wang JW, Yi H. 2021. Milk-derived extracellular vesicles alleviate ulcerative colitis by regulating the gut immunity and reshaping the gut microbiota. Theranostics 11:8570-8586.   DOI
20 Aarts J, Boleij A, Pieters BCH, Feitsma AL, Van Neerven RJJ, Ten Klooster JP, M'Rabet L, Arntz OJ, Koenders MI, van de Loo FAJ. 2021. Flood control: How milk-derived extracellular vesicles can help to improve the intestinal barrier function and break the gut-joint axis in rheumatoid arthritis. Front Immunol 12:703277.   DOI
21 Scholz-Ahrens KE, Ahrens F, Barth CA. 2020. Nutritional and health attributes of milk and milk imitations. Eur J Nutr 59:19-34.   DOI
22 Sedykh S, Kuleshova A, Nevinsky G. 2020. Milk exosomes: Perspective agents for anticancer drug delivery. Int J Mol Sci 21:6646.   DOI
23 Shandilya S, Rani P, Onteru SK, Singh D. 2020. Natural ligand-receptor mediated loading of siRNA in milk derived exosomes. J Biotechnol 318:1-9.   DOI
24 Shome S, Jernigan RL, Beitz DC, Clark S, Testroet ED. 2021. Non-coding RNA in raw and commercially processed milk and putative targets related to growth and immune-response. BMC Genomics 22:749.   DOI
25 Somiya M, Yoshioka Y, Ochiya T. 2018. Biocompatibility of highly purified bovine milk-derived extracellular vesicles. J Extracell Vesicles 7:1440132.   DOI
26 Du C, Quan S, Nan X, Zhao Y, Shi F, Luo Q, Xiong B. 2021. Effects of oral milk extracellular vesicles on the gut microbiome and serum metabolome in mice. Food Funct 12:10938-10949.   DOI
27 Benmoussa A, Lee CHC, Laffont B, Savard P, Laugier J, Boilard E, Gilbert C, Fliss I, Provost P. 2016. Commercial dairy cow milk microRNAs resist digestion under simulated gastrointestinal tract conditions. J Nutr 146:2206-2215.   DOI
28 Cai M, He H, Jia X, Chen S, Wang J, Shi Y, Liu B, Xiao W, Lai S. 2018. Genome-wide microRNA profiling of bovine milk-derived exosomes infected with Staphylococcus aureus. Cell Stress Chaperones 23:663-672.   DOI
29 Chen X, Gao C, Li H, Huang L, Sun Q, Dong Y, Tian C, Gao S, Dong H, Guan D, Hu X, Zhao S, Li L, Zhu L, Yan Q, Zhang J, Zen K, Zhang CY. 2010. Identification and characterization of microRNAs in raw milk during different periods of lactation, commercial fluid, and powdered milk products. Cell Res 20:1128-1137.   DOI
30 Fonseka P, Kang T, Chee S, Chitti SV, Sanwlani R, Ang CS, Mathivanan S. 2021. Temporal quantitative proteomics analysis of neuroblastoma cells treated with bovine milk-derived extracellular vesicles highlights the anti-proliferative properties of milk-derived extracellular vesicles. Cells 10:750.   DOI
31 Ascanius SR, Hansen MS, Ostenfeld MS, Rasmussen JT. 2021. Milk-derived extracellular vesicles suppress inflammatory cytokine expression and nuclear factor-κb activation in lipopolysaccharide-stimulated macrophages. Dairy 2:165-178.   DOI
32 Roerig J, Schiller L, Kalwa H, Hause G, Vissiennon C, Hacker MC, Wolk C, Schulz-Siegmund M. 2021. A focus on critical aspects of uptake and transport of milk-derived extracellular vesicles across the Caco-2 intestinal barrier model. Eur J Pharm Biopharm 166:61-74.   DOI
33 Benmoussa A, Laugier J, Beauparlant CJ, Lambert M, Droit A, Provost P. 2020. Complexity of the microRNA transcriptome of cow milk and milk-derived extracellular vesicles isolated via differential ultracentrifugation. J Dairy Sci 103:P16-29.
34 Kandimalla R, Aqil F, Alhakeem SS, Jeyabalan J, Tyagi N, Agrawal A, Yan J, Spencer W, Bondada S, Gupta RC. 2021a. Targeted oral delivery of paclitaxel using colostrum-derived exosomes. Cancers 13:3700.   DOI
35 Lopez de Las Hazas MC, del Pozo-Acebo L, Hansen MS, Gil-Zamorano J, Mantilla-Escalante DC, Gomez-Coronado D, Marin F, Garcia-Ruiz A, Rasmussen JT, Davalos A. 2022. Dietary bovine milk miRNAs transported in extracellular vesicles are partially stable during GI digestion, are bioavailable and reach target tissues but need a minimum dose to impact on gene expression. Eur J Nutr 62:1043-1056.
36 Rahman MM, Takashima S, Kamatari YO, Badr Y, Kitamura Y, Shimizu K, Okada A, Inoshima Y. 2021. Proteomic profiling of milk small extracellular vesicles from bovine leukemia virus-infected cattle. Sci Rep 11:2951.   DOI
37 Adriano B, Cotto NM, Chauhan N, Jaggi M, Chauhan SC, Yallapu MM. 2021. Milk exosomes: Nature's abundant nanoplatform for theranostic applications. Bioact Mater 6:2479-2490.   DOI
38 Ahn G, Kim YH, Ahn JY. 2021. Multifaceted effects of milk-exosomes (mi-exo) as a modulator of scar-free wound healing. Nanoscale Adv 3:528-537.   DOI
39 Bae IS, Kim SH. 2021. Milk exosome-derived microrna-2478 suppresses melanogenesis through the Akt-GSK3β pathway. Cells 10:2848.   DOI
40 Sun J, Aswath K, Schroeder SG, Lippolis JD, Reinhardt TA, Sonstegard TS. 2015. MicroRNA expression profiles of bovine milk exosomes in response to Staphylococcus aureus infection. BMC Genomics 16:806.   DOI
41 Tao H, Xu H, Zuo L, Li C, Qiao G, Guo M, Zheng L, Leitgeb M, Lin X. 2020. Exosomes-coated bcl-2 siRNA inhibits the growth of digestive system tumors both in vitro and in vivo. Int J Biol Macromol 161:470-480.   DOI
42 Tong L, Hao H, Zhang X, Zhang Z, Lv Y, Zhang L, Yi H. 2020. Oral administration of bovine milk-derived extracellular vesicles alters the gut microbiota and enhances intestinal immunity in mice. Mol Nutr Food Res 64:e1901251.
43 Kandimalla R, Aqil F, Tyagi N, Gupta R. 2021b. Milk exosomes: A biogenic nanocarrier for small molecules and macromolecules to combat cancer. Am J Reprod Immunol 85:e13349.
44 Grossen P, Portmann M, Koller E, Duschmale M, Minz T, Sewing S, Pandya NJ, van Geijtenbeek SK, Ducret A, Kusznir EA, Huber S, Berrera M, Lauer ME, Ringler P, Nordbo B, Jensen ML, Sladojevich F, Jagasia R, Alex R, Gamboni R, Keller M. 2021. Evaluation of bovine milk extracellular vesicles for the delivery of locked nucleic acid antisense oligonucleotides. Eur J Pharm Biopharm 158:198-210.   DOI
45 Haug A, Hostmark AT, Harstad OM. 2007. Bovine milk in human nutrition: A review. Lipids Health Dis 6:25.   DOI
46 Izumi H, Kosaka N, Shimizu T, Sekine K, Ochiya T, Takase M. 2012. Bovine milk contains microRNA and messenger RNA that are stable under degradative conditions. J Dairy Sci 95:P4831-4841.
47 Veziroglu EM, Mias GI. 2020. Characterizing extracellular vesicles and their diverse RNA contents. Front Genet 11:700.   DOI
48 Komine-Aizawa S, Ito S, Aizawa S, Namiki T, Hayakawa S. 2020. Cow milk exosomes activate NK cells and γδT cells in human PBMCs in vitro. Immunol Med 43:161-170.   DOI
49 van Niel G, D'Angelo G, Raposo G. 2018. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19:213-228.   DOI
50 Kleinjan M, van Herwijnen MJ, Libregts SFWM, van Neerven RJJ, Feitsma AL, Wauben MHM. 2021. Regular industrial processing of bovine milk impacts the integrity and molecular composition of extracellular vesicles. J Nutr 151:1416-1425.   DOI
51 Li D, Yao S, Zhou Z, Shi J, Huang Z, Wu Z. 2020. Hyaluronan decoration of milk exosomes directs tumor-specific delivery of doxorubicin. Carbohydr Res 493:108032.   DOI
52 Rani P, Vashisht M, Golla N, Shandilya S, Onteru SK, Singh D. 2017. Milk miRNAs encapsulated in exosomes are stable to human digestion and permeable to intestinal barrier in vitro. J Funct Foods 34:431-439.   DOI
53 Pieters BCH, Arntz OJ, Bennink MB, Broeren MGA, van Caam APM, Koenders MI, van Lent PLEM, van den Berg WB, de Vries M, van der Kraan PM, van de Loo FAJ. 2015. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β. PLOS ONE 10:e0121123.   DOI
54 Pirila S, Taskinen M, Viljakainen H, Kajosaari M, Turanlahti M, Saarinen-Pihkala UM, Makitie O. 2011. Infant milk feeding influences adult bone health: A prospective study from birth to 32 years. PLOS ONE 6:e19068.   DOI
55 Quan SY, Nan XM, Wang K, Zhao YG, Jiang LS, Yao JH, Xiong BH. 2020. Replacement of forage fiber with non-forage fiber sources in dairy cow diets changes milk extracellular vesicle-miRNA expression. Food Funct 11:2154-2162.   DOI
56 Reif S, Elbaum-Shiff Y, Koroukhov N, Shilo I, Musseri M, Golan-Gerstl R. 2020. Cow and human milk-derived exosomes ameliorate colitis in dss murine model. Nutrients 12:2589.   DOI
57 Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE. 2012. Bovine milk exosome proteome. J Proteomics 75:1486-1492.   DOI
58 Ong SL, Blenkiron C, Haines S, Acevedo-Fani A, Leite JAS, Zempleni J, Anderson RC, McCann MJ. 2021. Ruminant milk-derived extracellular vesicles: A nutritional and therapeutic opportunity? Nutrients 13:2505.   DOI
59 Zhang Q, Xiao Q, Yin H, Xia C, Pu Y, He Z, Hu Q, Wang J, Wang Y. 2020. Milk-exosome based pH/light sensitive drug system to enhance anticancer activity against oral squamous cell carcinoma. RSC Advances 10:28314-28323.   DOI
60 Oliveira MC, Pieters BCH, Guimaraes PB, Duffles LF, Heredia JE, Silveira ALM, Oliveira ACC, Teixeira MM, Ferreira AVM, Silva TA, van de Loo FAJ, Macari S. 2020. Bovine milk extracellular vesicles are osteoprotective by increasing osteocyte numbers and targeting rankl/opg system in experimental models of bone loss. Front Bioeng Biotechnol 8:891.   DOI
61 Uenishi K, Ishida H, Toba Y, Aoe S, Itabashi A, Takada Y. 2007. Milk basic protein increases bone mineral density and improves bone metabolism in healthy young women. Osteoporos Int 18:385-390.   DOI
62 Ozdemir S. 2020. Identification and comparison of exosomal microRNAs in the milk and colostrum of two different cow breeds. Gene 743:144609.   DOI
63 Pegtel DM, Gould SJ. 2019. Exosomes. Annu Rev Biochem 88:487-514.   DOI
64 Stremmel W, Weiskirchen R, Melnik BC. 2020. Milk exosomes prevent intestinal inflammation in a genetic mouse model of ulcerative colitis: A pilot experiment. Inflamm Intest Dis 5:117-123.   DOI
65 Wang L, Shi Z, Wang X, Mu S, Xu X, Shen L, Li P. 2021a. Protective effects of bovine milk exosomes against oxidative stress in IEC-6 cells. Eur J Nutr 60:317-327.   DOI
66 Kirchner B, Buschmann D, Paul V, Pfaffl MW. 2020. Postprandial transfer of colostral extracellular vesicles and their protein and miRNA cargo in neonatal calves. PLOS ONE 15:e0229606.   DOI
67 Brown BA, Zeng X, Todd AR, Barnes LF, Winstone JMA, Trinidad JC, Novotny MV, Jarrold MF, Clemmer DE. 2020. Charge detection mass spectrometry measurements of exosomes and other extracellular particles enriched from bovine milk. Anal Chem 92:3285-3292.   DOI
68 Colitti M, Sgorlon S, Licastro D, Stefanon B. 2019. Differential expression of miRNAs in milk exosomes of cows subjected to group relocation. Res Vet Sci 122:148-155.   DOI
69 Izumi H, Tsuda M, Sato Y, Kosaka N, Ochiya T, Iwamoto H, Namba K, Takeda Y. 2015. Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. J Dairy Sci 98:P2920-2933.
70 Wolf T, Baier SR, Zempleni J. 2015. The intestinal transport of bovine milk exosomes is mediated by endocytosis in human colon carcinoma caco-2 cells and rat small intestinal iec-6 cells. J Nutr 145:2201-2206.   DOI
71 Yun B, Kim Y, Park DJ, Oh S. 2021. Comparative analysis of dietary exosome-derived microRNAs from human, bovine and caprine colostrum and mature milk. J Anim Sci Technol 63:593-602.   DOI
72 Yun B, Maburutse BE, Kang M, Park MR, Park DJ, Kim Y, Oh S. 2020. Short communication: Dietary bovine milk-derived exosomes improve bone health in an osteoporosis-induced mouse model. J Dairy Sci 103:7752-7760.   DOI
73 Zaborowski MP, Balaj L, Breakefield XO, Lai CP. 2015. Extracellular vesicles: Composition, biological relevance, and methods of study. Bioscience 65:783-797.   DOI
74 Zeng B, Chen T, Xie MY, Luo JY, He JJ, Xi QY, Sun JJ, Zhang YL. 2019. Exploration of long noncoding RNA in bovine milk exosomes and their stability during digestion in vitro. J Dairy Sci 102:6726-6737.   DOI
75 Zhang C, Lu X, Hu J, Li P, Yan J, Ling X, Xiao J. 2021. Bovine milk exosomes alleviate cardiac fibrosis via enhancing angiogenesis in vivo and in vitro. J Cardiovasc Trans Res. doi: 10.1007/s12265-021-10174-0.   DOI
76 Zhong J, Xia B, Shan S, Zheng A, Zhang S, Chen J, Liang XJ. 2021. High-quality milk exosomes as oral drug delivery system. Biomaterials 277:121126.   DOI
77 Wang L, Wang X, Shi Z, Shen L, Zhang J, Zhang J. 2021b. Bovine milk exosomes attenuate the alteration of purine metabolism and energy status in IEC-6 cells induced by hydrogen peroxide. Food Chem 350:129142.   DOI
78 Reinhardt TA, Sacco RE, Nonnecke BJ, Lippolis JD. 2013. Bovine milk proteome: Quantitative changes in normal milk exosomes, milk fat globule membranes and whey proteomes resulting from Staphylococcus aureus mastitis. J Proteomics 82:141-154.   DOI
79 Sadri M, Shu J, Kachman SD, Cui J, Zempleni J. 2020. Milk exosomes and miRNA cross the placenta and promote embryo survival in mice. Reproduction 160:501-509.   DOI
80 Maburutse BE, Park MR, Oh S, Kim Y. 2017. Evaluation and characterization of milk-derived microvescicle isolated from bovine colostrum. Korean J Food Sci Anim Resour 37:654-662.   DOI
81 Warren MR, Zhang C, Vedadghavami A, Bokvist K, Dhal PK, Bajpayee AG. 2021. Milk exosomes with enhanced mucus penetrability for oral delivery of siRNA. Biomater Sci 9:4260-4277.   DOI
82 Yang M, Song D, Cao X, Wu R, Liu B, Ye W, Wu J, Yue X. 2017. Comparative proteomic analysis of milk-derived exosomes in human and bovine colostrum and mature milk samples by iTRAQ-coupled LC-MS/MS. Food Res Int 92:17-25.   DOI
83 Yu S, Zhao Z, Xu X, Li M, Li P. 2019. Characterization of three different types of extracellular vesicles and their impact on bacterial growth. Food Chem 272:372-378.   DOI
84 Zhou F, Paz HA, Sadri M, Cui J, Kachman SD, Fernando SC, Zempleni J. 2019. Dietary bovine milk exosomes elicit changes in bacterial communities in C57BL/6 mice. Am J Physiol Gastrointest Liver Physiol 317:G618-G624.   DOI