• Title/Summary/Keyword: external forces

Search Result 739, Processing Time 0.027 seconds

A Study on the Memory Effect of the Radiation Forces in the Maneuvering Motion of a Ship (선박(船舶)의 파랑중(波浪中) 조종운동(操縱運動)에 있어서 동유체력(動流體力)에 의한 메모리 효과(效果))

  • Seung-Keon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.3
    • /
    • pp.53-58
    • /
    • 1992
  • The memory effect in maneuvering motion is very small and usually neglected. But, considering the maneuvering motion in waves, we need to calculate the memory effect strictly. Meanwhile. it is popular to treat the wave exciting forces as the steady sinusoidal forces and simply add to the right-hand side of the equation of the motion. This paper treats the memory effect in maneuvering motion when we take the wave exciting forces as the simple external forces and discuss the validity of such treatments.

  • PDF

A Study on the Closed Linear Movement of the Center of Mass in the Rotatory Movement of a Rigid Body

  • Chung, Byung-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1216-1219
    • /
    • 2002
  • It is understood so far that the center of mass does not make any linear movement from the rotatory movement of a rigid body in the closed system. However, it has been found that the center of mass of the system could make a closed linear movement due to production of an instantaneous center of mass by the Coriolis force in the rotatory movement of a rigid body in the closed system. The nature of the closed linear movement in the non-inertial system and that of the open movement in the inertial system are different from each other. That is, the closed movement is described like the time integration of frictional forces, which is different from the open movement usually considered and described like the time integration of external forces. It is shown in this paper that the Coriolis forces, called a fictitious force in the classical mechanics, is similar to the frictional force so that it causes to move the center of mass of a closed system. In this paper, following an explanation of the closed linear movement of a non-inertial system and the open movement of an inertial system, the source of the closed linear movement phenomenon of a rotatory rigid body is presented.

  • PDF

A Study of Static Unstable Behavioral Characteristics of Cable Dome Structures according to the Structural System (구조시스템에 따른 케이블 돔의 정적 불안정거동 특성에 관한 연구)

  • Cho, In-Ki;Kim, Hyung-Seok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.131-138
    • /
    • 2004
  • The cable structure is a kind of ductile structural system using the tension cable and compression column as a main element. From mechanical characteristics of the structural material, it is profitable to be subjected to the axial forces than bending moment or shear forces. And we haweto consider the local buckling when it is subjected to compression forces, but tension member can be used until the failure strength. So we can say that the tension member is the most excellent structural member. Cable dome structures are made up of only the tension cable and compression column considering these mechanical efficiency and a kind of structural system. In this system, the compression members are connected by using tension members, not connected directly each other. Also, this system is lightweight and easy to construct. But, the cable dome structural system has a danger of global buckling as external load increases. That is, as the axisymmetric structure is subjected to the axisymmetric load, the unsymmetric deformation mode is happened at some critical point and the capacity of the structure is rapidly lowered by this reason. This phenomenon Is the bifurcation and we have to reflect this in the design process of the large space structures. In this study, We investigated the nonlinear unstable phenomenon of the Geiger, Zetlin and Flower-type cable dome.

  • PDF

The Development of a Sliding Joint for Very Flexible Multibody Dynamics (탄성 대변형 다물체동역학을 위한 슬라이딩조인트 개발)

  • Seo Jong-Hwi;Jung Il-Ho;Sugiyama Hiroyuki;Shabana Ahmed A.;Park Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1123-1131
    • /
    • 2005
  • In this paper, a formulation for a spatial sliding joint, which a general multibody can move along a very flexible cable, is derived using absolute nodal coordinates and non-generalized coordinate. The large deformable motion of a spatial cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. And the non-generalized coordinate, which is neither related to the inertia forces nor external forces, is used to describe an arbitrary position along the centerline of a very flexible cable. In the constraint equation for the sliding joint, since three constraint equations are imposed and one non-generalized coordinate is introduced, one constraint equation is systematically eliminated. Therefore, there are two independent Lagrange multipliers in the final system equations of motion associated with the sliding joint. The development of this sliding joint is important to analyze many mechanical systems such as pulley systems and pantograph/catenary systems for high speed-trains.

The Estimation of Fatigue Strength of Structure with Practical Dynamic Force by Inverse Problem and Lethargy Coefficient (구조물의 피로강도평가를 위한 역문제 및 무기력계수에 의한 실동하중해석)

  • 양성모;송준혁;강희용;노홍길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Most of mechanical structures are composed of many substructures connected to one another by various types of mechanical joints. In automotive engineering, it is important to study these connected structures under various dynamic forces for the evaluations of fatigue life and stress concentration exactly. In this study, the dynamic response of vehicle structure to external forces is classified an inverse problem involving strains from the experiment and the analysis. The practical dynamic forces are determined by the combination of the analytical and experimental method with analyzed strain by quasi-static finite element analysis under unit force and with measured strain by a strain gage under driving load, respectively. In a stressed body, inter-molecular chemical bonds are failed beyond the certain magnitude. The failure of molecular structure in material is considered as a time process of which rate is determined by mechanical stress. That is, the failure of inter-molecular chemical bonds is the fatigue lift of material. This kinetic concept is expressed as lethargy coefficient. And S-N curve is obtained with the lethargy coefficient from quasi-static tensile test. Equivalent practical dynamic force is obtained from the identification of practical dynamic force for one loading point. Using the practical dynamic force and S-N curve, fatigue life of a window pillar is analyzed with FEM under the identified force by the procedure of above mentioned.

Seismic performance evaluation of reactor containment building considering effects of concrete material models and prestressing forces

  • Bidhek Thusa;Duy-Duan Nguyen;Md Samdani Azad;Tae-Hyung Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1567-1576
    • /
    • 2023
  • The reactor containment building (RCB) in nuclear power plants (NPPs) plays an important role in protecting the reactor systems from external loads as well as preventing radioactive leaking. As we witnessed the nuclear disaster at Fukushima Daiichi (Japan) in 2011, the earthquake is one of the major threats to NPPs. The purpose of this study is to evaluate effects of concrete material models and presstressing forces on the seismic performance evaluation of RCB in NPPs. A typical RCB designed in Korea is employed for a case study. Detailed three-dimensional nonlinear finite element models of RCB are developed in ANSYS. A series of pushover analyses are then performed to obtain the pushover curves of RCB. Different capacity curves are compared to recognize the influence of different material models on the nonlinear behavior of RCB. Additionally, the effects of prestressing forces on the seismic performances of the structure are also investigated. Moreover, a set of damage states corresponding to damage evolutions of the structures is proposed in this study.

Evaluation of Breakdown Strength on the Locally Dented Power Cable (초고압 XLPE 케이블의 국부적 늘림에 대한 파괴강도 고찰)

  • Kim, Y.H.;Lee, S.J.;Cho, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.251-254
    • /
    • 2001
  • Internal and external forces may be applied on the power cable in the both process of transportation and installation. Even though the EHV power cables have the structure of metal sheath and plastic jacket etc. to minimize these negative influences, the unusual forces result in the unexpected deformation of the cable. Compressing moulded XLPE model cable sheets were prepared and locally dented with round-edge and square-edge tools. All data were analyzed employing Weibull distribution. The breakdown strength of dented molded specimens showed lower values than the normal ones by 10-60%.

  • PDF

Self-similarity in the equation of motion of a ship

  • Lee, Gyeong Joong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.333-346
    • /
    • 2014
  • If we want to analyze the motion of a body in fluid, we should use rigid-body dynamics and fluid dynamics together. Even if the rigid-body and fluid dynamics are each self-consistent, there arises the problem of self-similar structure in the equation of motion when the two dynamics are coupled with each other. When the added mass is greater than the mass of a body, the calculated motion is divergent because of its self-similar structure. This study showed that the above problem is an inherent problem. This problem of self-similar structure may arise in the equation of motion in which the fluid dynamic forces are treated as external forces on the right hand side of the equation. A reconfiguration technique for the equation of motion using pseudo-added-mass was proposed to resolve the self-similar structure problem; specifically for the case when the fluid force is expressed by integration of the fluid pressure.

Lifting Analysis Considering Three Dimensional Dynamic Responses of a Boom based on Finite Element Formulation (유한요소 붐 모델의 3차원 동적 거동을 고려한 리프팅 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.8
    • /
    • pp.753-760
    • /
    • 2010
  • In this paper, the lifting analysis of a floating crane with a shipbuilding block is performed. Since floating cranes are operated in ocean waves, six degree-of-freedom motions are considered in the dynamic equations of motions of the floating crane and the block. The boom of the floating crane is considered as an elastic body in the analysis, and is modeled as three dimensional beam based on the finite element formulation. The hydrostatic and hydrodynamic forces by a regular wave are considered as external forces. By solving the equations of motions numerically, the dynamic responses of the floating crane and the block are simulated. The simulation results with different wave directions are compared and the conditions which cause maximum responses are discussed.

Usage of Dynamic Vibration Absorbers for a Beam Subjected to Moving Forces and for a System Mounted on a Moving Base (이동하중을 받는 보와 가동 기초 위에 설치된 계에의 동흡진기의 이용)

  • Lee, Gun-Myung;Byun, Jai-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.27-34
    • /
    • 2015
  • Dynamic vibration absorbers are widely used in machinery, buildings, and structures, including bridges. Two cases of their usage are considered in this paper. One is a simply supported beam subjected to either a moving force or a sequence of moving forces, which simulates a train-bridge interaction problem. The other is a case where a primary system is mounted on a base that is not grounded and is excited by an external force. The conditions that the dynamic vibration absorbers must meet in these cases are found and compared to those for usual cases where bases of primary systems are grounded.