• 제목/요약/키워드: exposure pathways

검색결과 196건 처리시간 0.019초

다매체/다경로 노출을 고려한 benzo(a)pyrene의 총 인체 노출량 예측 (Estimating Human Exposure to Benzo(a)pyrene through Multimedia/Multiroute Exposure Scenario)

  • 문지영;양지연;임영욱;박성은;신동천
    • Environmental Analysis Health and Toxicology
    • /
    • 제18권4호
    • /
    • pp.255-269
    • /
    • 2003
  • The objective of this study was to estimate human exposure to benzo (a)pyrene through multimedia/multi-pathway exposure scenario. The human exposure scenario for benzo(a)pyrene was consisted of 12 multiple exposure pathways, and the multipathway human exposure model based on this scenario constituted. In this study, the multipathway human exposure model was used to estimate the concentrations in the exposure contact media, human intake factors and lifetime average daily dose (LAD $D_{model}$) of benzo(a)pyrene in the environment. Sensitivity analysis was performed to identify the important parameters and Monte-Carlo simulation was undertaken to examine the uncertainty of the model. The total LAD $D_{model}$ was estimated to be 5.52${\times}$10$^{-7}$ mg/kg-day (2.06${\times}$10$^{-7}$ -8.65${\times}$10$^{-7}$ mg/kg-day) using the multipathway human exposure model. The inhalation dose accounted for 78% of the total LADD, whereas ingestion and dermal contact intake accounted for 20.2% and 1.8% of the total exposure, respectively. Based on the sensitivity analysis, the most significant contributing input parameter was benzo (a)pyrene concentration of ambient air. Consequently, exposure via inhalation in outdoor/indoor air was the highest compared with the exposure via other medium/pathways.

유류오염부지 시범적용을 통한 실외공기 오염물질흡입 노출경로에 대한 부지특이적 노출량 산정 방안에 대한 고찰 (Study on the Exposure Assessment Methodology for Outdoor Air Inhalation Pathways in Site-specific Risk Assessment and Its Application in a TPH-contaminated Site)

  • 김상현;정현용;정부윤;노회정;김현구;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제25권3호
    • /
    • pp.65-73
    • /
    • 2020
  • Exposure assessment methodology for outdoor air inhalation pathways (i.e., inhalation of volatile compounds and fugitive dust in outdoor air) was investigated. Default values of several parameters currently used in Korea (e.g., Q/C; inverse value of concentration per unit flux, and frs; soil fraction in PM10) may not be suitable and lack site-specificity, as they have been adopted from the risk assessment guidance of the United States or the Netherlands. Such limitation can be addressed to a certain degree by incorporating the volatilization factor (VF) and the particulate emission factor (PEF) with Box model. This approach was applied to an exposure assessment of a site contaminated with petroleum hydrocarbons in Korea. The result indicated that the suggested methodology led to more accurate site-specific exposure assessment for outdoor inhalation pathways. Further work to establish methodology to determine site-specific Q/C values in Korea needs to be done to secure the reliability of the exposure assessment for outdoor air inhalation pathways.

Managing Soil Contamination in the United States: Policy and Practice

  • Small, Matthew C.
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 International Symposium
    • /
    • pp.58-69
    • /
    • 2003
  • Soil contamination in the United States is managed using a risk-based decision making process. In other words, we don't ask, 'how much soil contamination can be cleaned up\ulcorner' Instead we ask, 'how much contamination can be safely left in place\ulcorner' The determination of 'safe' levels of contamination is based upon the potential for exposure and the toxicity of the contaminants of concern in soil. Potential for exposure is determined by evaluating potential exposure pathways from source to receptor given current or reasonably anticipated land use. Soil cleanup goals are then calculated for any complete exposure pathways based upon toxicity and the route of exposure. In some cases, institutional or engineering controls are also used to limit the potential for exposure. In order to prevent a continuous degradation of environmental quality, risk-based cleanup approaches must be combined with strong contamination prevention programs. In addition, alternative risk management approaches should be incorporated into an overall risk reduction strategy.erall risk reduction strategy.

  • PDF

Human exposure of hazardous elements from different urban soils in Bangladesh

  • Islam, Md.S.;Ahmed, Md.K.;Al-Mamun, Md.H.
    • Advances in environmental research
    • /
    • 제5권2호
    • /
    • pp.79-94
    • /
    • 2016
  • In order to evaluate the contamination and health risk, levels of six hazardous elements i.e., Cr, Ni, Cu, As, Cd and Pb in soils of 12 different land-uses were measured. The average concentration of Cu, Cr, Ni, Pb, As and Cd in soils were 267, 239, 206, 195, 58 and 16 mg/kg, respectively. Levels of each metal exceeded the environmental action level for soils, which could pose significant risk to human. The metal concentrations were subsequently used to establish hazard indices (for adults and children) where the 5th and 95th percentile values were used to derive the hazard index through different exposure pathways (ingestion, dermal contact and inhalation). Considering the total exposure through each of the three pathways, the hazard index elucidates that there was a potency of non-cancer risk at most of the sites for both the adults and children. The findings of this study suggested that different land-use soils were severely contaminated with hazardous elements and attention is needed on the potential health risks to the exposed inhabitants.

Involvement of Caenohabditis elegans MAPK Signaling Pathways in Oxidative Stress Response Induced by Silver Nanoparticles Exposure

  • Roh, Ji-Yeon;Eom, Hyun-Jeong;Choi, Jin-Hee
    • Toxicological Research
    • /
    • 제28권1호
    • /
    • pp.19-24
    • /
    • 2012
  • In the present study, toxicity of silver nanoparticles (AgNPs) was investigated in the nematode, Caenohabditis elegans focusing on the upstream signaling pathway responsible for regulating oxidative stress, such as mitogen-activated protein kinase (MAPK) cascades. Formation of reactive oxygen species (ROS) was observed in AgNPs exposed C.elegans, suggesting oxidative stress as an important mechanism in the toxicity of AgNPs towards C. elegans. Expression of genes in MAPK signaling pathways increased by AgNPs exposure in less than 2-fold compared to the control in wildtype C.elegans, however, those were increased dramatically in sod-3 (gk235) mutant after 48 h exposure of AgNPs (i.e. 4-fold for jnk-1 and mpk-2; 6-fold for nsy-1, sek-1, and pmk-1, and 10-fold for jkk-1). These results on the expression of oxidative stress response genes suggest that sod-3 gene expression appears to be dependent on p38 MAPK activation. The high expressions of the pmk-1 gene 48 h exposure to AgNPs in the sod-3 (gk235) mutant can also be interpreted as compensatory mechanisms in the absence of important stress response genes. Overall results suggest that MAPK-based integrated stress signaling network seems to be involved in defense to AgNPs exposure in C.elegans.

원전 중대사고시 피폭경로 및 핵종의 방사선 피폭에 대한 상대적 중요도 해석 (Analysis of Exposure Pathways and the Relative Importance of Radionuclides to Radiation Exposure in the Case of a Severe Accident of a Nuclear Power Plant)

  • 황원태;서경석;김은한;한문희;김병우
    • Journal of Radiation Protection and Research
    • /
    • 제19권3호
    • /
    • pp.209-221
    • /
    • 1994
  • 원자력발전소의 중대 사고시 대기로 방출된 방사성물질에 의해 피폭자가 사고후 일생동안 받게 될 전신 피폭선량과 핵종의 상대적 중요도를 방출점으로부터 거리에 따라 각 피폭경로에 대해 평가하였다. 방사능운과 지표에 침적된 방사성물질에 의한 외부피폭, 호흡과 오염된 음식물섭취에 의한 내부피폭이 피폭경로로 고려되었다. 오염된 음식물섭취에 의한 영향은 우리나라 환경을 고려하여 개발된 동적 삽식경로모델 KORFOOD을 사용하여 침적시점과 침적후 시간에 따른 음식물내 방사성물질의 농도 변화를 고려하였다. 방출점으로부터 80km까지 피폭선량을 평가한 결과, 오염된 음식물섭취에 의한 영향이 가장 높았다. 핵종별 기여도는 방사능운에 의한 외부피폭과 호흡에 의한 내부피폭의 경우 I, 침적된 방사성물질에 의한 외부피폭의 경우 Cs에 의한 영향이 가장 높았다. 오염된 음식물섭취에 의한 내부피폭의 경우 Cs은 여름철 침적, Sr은 겨울철 침적에 보다 중요한 영향을 미쳤다.

  • PDF

다양한 위해성평가 방법에 따라 도출한 오염토양 선별기준의 차이에 관한 연구 (I): 매체 간 이동현상 해석에 따른 차이 (Analysis on the Risk-Based Screening Levels Determined by Various Risk Assessment Tools (I): Variability from Different Analyses of Cross-Media Transfer Rates)

  • 정재웅;류혜림;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제16권2호
    • /
    • pp.12-29
    • /
    • 2011
  • Risk-based screening levels (RBSLs) of some pollutants for residential adults were derived with risk assessment tools developed by United States Environmental Protection Agency (USEPA), American Society for Testing and Materials (ASTM), and Korea Ministry of Environment (KMOE) and compared each other. To make the comparison simple, ingestion of soil, dermal contact with soil, outdoor inhalation of vapors, indoor inhalation of vapors, and inhalation of soil particulates were chosen as exposure pathways. The results showed that the derived RBSLs varied for every exposure pathway. For direct exposure pathways (i.e., ingestion of soil and dermal contact with soil), the derived RBSLs varied mainly due to the different default values for exposure factors and toxicity data. When identical default values for the parameters were used, the same RBSLs could be derived regardless of the assessment tools used. For inhalation of vapors and inhalation of soil particulates, however, different analysis methods for cross-media transfer rates were used and different assumptions were established for each tool, identical RBSLs could not be obtained even if the same default values for exposure factors were used. Especially for inhalation of soil particulates pathway, screening level derived using KMOE approach (most conservative) was approximately 5000~10000 times lower than the screening level derived using ASTM approach (least conservative). Our results suggest that, when deriving RBSL using a specific tool, it is a prerequisite to technically review the analysis methods for cross-media transfer rates as well as to understand how the assessment tool derives the default values for exposure factors.

Differential Gene Expression Profiling in Human Promyelocytic Leukemia Cells Treated with Benzene and Ethylbenzene

  • Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제4권4호
    • /
    • pp.267-277
    • /
    • 2008
  • Benzene and ethylbenzene (BE), the volatile organic compounds (VOCs) are common constituents of cleaning and degreasing agents, paints, pesticides, personal care products, gasoline and solvents. VOCs are evaporated at room temperature and most of them exhibit acute and chronic toxicity to human. Chronic exposure of benzene is responsible for myeloid leukemia and also ethylbenzene is also recognized as a possible carcinogen. To evaluate the BE effect on human, whole human genome 35 K oligonucleotide microarray were screened for the identification of the differential expression profiling. We identified 280 up-regulated and 201 down-regulated genes changed by more than 1.5 fold by BE exposure. Functional analysis was carried out by using DAVID bioinformatics software. Clustering of these differentially expressed genes were associated with immune response, cytokine-cytokine receptor interaction, toll-like signaling pathway, small cell lung cancer, immune response, apoptosis, p53 signaling pathway and MAPKKK cascade possibly constituting alternative or subordinate pathways of hematotoxicity and immune toxicity. Gene ontology analysis methods including biological process, cellular components, molecular function and KEGG pathway thus provide a fundamental basis of the molecular pathways through BEs exposure in human lymphoma cells. This may provides a valuable information to do further analysis to explore the mechanism of BE induced hematotoxicity.

Stabilization of fluorine in soil using calcium hydroxide and its potential human health risk

  • Jeong, Seulki;Kim, Doyoung;Yoon, Hye-On
    • Environmental Engineering Research
    • /
    • 제24권4호
    • /
    • pp.654-661
    • /
    • 2019
  • This study assessed the stabilization of fluorine (F)-contaminated soil using calcium hydroxide (Ca(OH)2) and the consequent changes in human health risk. The bioavailable F decreased to 3.5%, (i.e., 57.9 ± 1.27 mg/kg in 6% Ca(OH)2-treated soil sample) from 43.0%, (i.e., 711 ± 23.4 mg/kg in control soil sample). This resulted from the conversion of water-soluble F to stable calcium fluoride, which was confirmed by XRD spectrometry. Soil ingestion, inhalation of fugitive dust from soil, and water ingestion were selected as exposure pathways for human health risk assessment. Non-carcinogenic risks of F in soils reduced to less than 1.0 after stabilization, ranging from 4.2 to 0.34 for child and from 3.0 to 0.25 for adult. Contaminated water ingestion owing to the leaching of F from soil to groundwater was considered as a major exposure pathway. The risks through soil ingestion and inhalation of fugitive dust from soil were insignificant both before and after stabilization, although F concentration exceeded the Korean soil regulatory level before stabilization. Our data suggested that substantial risk to human health owing to various potential exposure pathways could be addressed by managing F present in soil.